Net zero energy building (NZEB) is wildly considered as an effective solution to the worldwide energy and environmental problems. With the intermittent and unstable features of renewable energy, NZEB power generation often mismatches its actual power consumption. Power mismatch is the inherent problem of NZEBs and its statistical and fluctuating characteristics are the key basis for the NZEB system design and control optimizations. Hence, the power mismatch characteristics have to be taken into account in the associated system design and control optimizations. However, due to lack of systematic studies, the characteristics of the power mismatch and their influential factors are still unclear. Without considering the power mismatch characteristics, the conventional system design and control methods can easily cause excessive initial cost and significant negative impacts on a grid. These practical limitations directly prevent the wide applications of NZEBs in practice. This project, therefore, proposes a study on NZEB system design and control optimizations based on the characteristics of power mismatch. First, the project systematically investigates the statistical and fluctuating characteristics of the power mismatch and identifies their associated key influential factors. Second, based on the statistical characteristics of the power mismatch, the proposed design method employs the genetic algorithm to optimize the sizes of the renewable energy system and the energy storage system for the initial cost minimization. Third, based on the fluctuating characteristics of the power mismatch, the proposed multi-objective control method employs the aggregated objective function to mitigate the negative impacts of the power mismatch on the grid power balance and the grid power supply quality in addition to improve the energy efficiency of NZEBs. The outputs of this multidisciplinary research can promote the developments and applications of NZEBs in practice and eventually help solve the increasing energy and environmental problems in china.
零能耗建筑是解决能源与环境问题的有效途径。由于可再生能源的不稳定及间歇性,零能耗建筑能源生产与需求无法实时匹配。能源实时不匹配是零能耗建筑的固有问题,其统计特性与波动特性是建筑系统设计与控制的关键基础。传统设计与控制优化未能考虑能源实时不匹配特性,易导致零能耗建筑系统配置过大、初投资过高及对电网冲击过大等问题,制约其实际推广应用。因而,本项目提出基于能源实时不匹配特性的零能耗建筑系统设计与控制优化研究。项目拟采用数据采集、数值仿真和统计分析探索能源实时不匹配统计、波动特性。基于统计特性,拟采用遗传算法进行系统配置寻优,解决系统配置过大,降低初投资。基于波动特性,拟采用多目标控制优化建筑对电网供需平衡影响、降低建筑对电网供电品质损害、提升建筑总能效。本项目属于多学科交叉研究热点,成果有助于解决零能耗建筑系统设计与控制优化中的关键科学问题,以利于其实际推广应用,缓解我国严峻的能源与环境问题。
零能耗建筑是解决能源与环境问题的有效途径。由于可再生能源的不稳定及间歇性,零能耗建筑能源生产与需求无法实时匹配。能源实时不匹配是零能耗建筑的固有问题,其统计特性与波动特性是建筑系统设计与控制的关键基础。传统设计与控制优化未能考虑能源实时不匹配特性,易导致零能耗建筑系统配置过大、初投资过高及对电网冲击过大等问题,制约其实际推广应用。因而本项目通过探索能源实时不匹配统计、波动特性,提出了基于不匹配特性的零能耗建筑系统设计与控制优化方案。具体内容包括:1.系统研究了探索了能源实时不匹配的统计波动特性及其关键影响因素。分析获取了能源实时不匹配的关键影响因素。所得到的不匹配统计特性、波动特性可用于指导零能耗建筑系统设计优化、控制优化。2. 开发了基于不匹配统计特性的零能耗建筑系统设计优化方案。利用实际零能耗建筑运行数据及仿真平台,研究了可再生能源系统、储能系统容量配置对能源实时不匹配统计特性的影响,分析获取了系统容量配置范围,应用全局寻优方法优化了系统容量配置,实现降低初投资;3.基于不匹配波动特性,建立了系统控制多目标优化算法,实现了优化零能耗建筑对电网供需平衡的影响,减小零能耗建筑对电网供电品质的损害,提升零能耗建筑能源消耗系统能效。本项目成果有助于解决零能耗建筑系统设计与控制优化中的关键科学问题,以利于其实际推广应用,缓解我国严峻的能源与环境问题。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
硬件木马:关键问题研究进展及新动向
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
面向云工作流安全的任务调度方法
具有不匹配干扰的异构多智能体系统的协同控制与优化
基于安全系数法的零能耗建筑能量系统的设计理论与方法
基于性能化设计的近零能耗建筑多能-储能系统协同耦合与调控机理研究
基于多视图能耗模型的能源调配与生产调度协同优化