Ozone is the most important stratospheric species which protects the Earth from harmful solar radiations, while the ozone near the Earth’s surface is one of severe pollutants, only second to PM2.5. The atmospheric wind is a key parameter for understanding dynamical thermal,and constituent structures of the atmosphere, and in particular for understanding the temporal and spatial distributions of the tropospheric and stratospheric ozone concentrations, and their exchange and transport processes. This study proposes innovative principle, instrument, scheme, and detection mode of a novel static imaging Michelson interferometer for simultaneously measuring stratospheric ozone and wind, which is the key variables in important atmospheric phenomena. The optical path difference (OPD) between the interfering light beams is produced by static components coated with thin films of different refractive indices, instead of the moving mirror used in the traditional interferometer. The proposed instrument observes the stratospheric O2 (a1Δg) 1.27μm near-infrared airglow emission, which is closely related to the ozone concentration. The interferograms with four different OPDs are taken simultaneously and used to retrieve information on the emission intensity, spectral width, and Doppler shift of the spectral frequency due to the atmospheric winds, from which the knowledge of the volume emission rate, atmospheric temperature and winds, as well as the concentrations of O2 and O3 can be obtained. So it makes ozone and wind’s simultaneous detection achievable in a static and wide field way. In comparison with the international traditional interferometer with scanning mirror, the static one has remarkable characteristics of real-time, accurate, and efficient measurements of rapidly changing spectrum, as well as good stability in space environment. The proposed research has great value for developing international leading level atmosphere detection technology with independent intellectual property rights in China, and have significant values of sciences and applications for determining the ozone variations associated with natural and anthropic activities, for studying ozone chemistry and energy budget, as well as assessing its impacts on the Earth’s environments and global climate change.
平流层最重要的成分臭氧保护地球免受太阳的有害辐射,近地面臭氧则是仅次于PM2.5的中国空气污染第二来源。风是理解大气动力学、热力学性质和成分结构、以及对流层和平流层臭氧分布和迁移交换过程的关键参数。本项目提出重要大气现象中关键变量平流层臭氧和大气风场探测的新理论、新方法和新技术。建立新型静态风成像干涉技术,观测与平流层臭氧浓度紧密相关的 O2 1.27μm红外气辉辐射,获得辐射谱线强度、宽度和风场影响产生的Doppler频移,反演出平流层大气风速、温度、粒子辐射率、O2和臭氧O3浓度分布。实现了风场、O3的静态、宽场、同时探测,较光程差按1/4波长递增的国际动镜四步扫描模式,具有实时、精确、高效、良好的航天环境安定性、适合快速变化光谱探测等显著特色。该研究对自主研发国际领先水平的星载大气光学探测技术,确定大气O3 浓度的变化以及它的全球循环收支和气候效应,具有重大的科学意义和广阔应用前景。
平流层最重要的成分臭氧保护地球免受太阳的有害辐射,近地面臭氧则是仅次于PM2.5的中国空气污染第二来源。风是理解大气动力学、热力学性质和成分结构、以及对流层和平流层臭氧分布和迁移交换过程的关键参数。本项目提出重要大气现象中关键变量平流层臭氧和大气风场探测的新理论、新方法和新技术。建立新型静态风成像干涉技术,观测与平流层臭氧浓度紧密相关的O2 1.27μm红外气辉辐射,获得辐射谱线强度、宽度和风场影响产生的Doppler频移,反演出平流层大气风速、温度、粒子辐射率、O2和臭氧O3浓度分布。实现了风场、O3的静态、宽场、同时探测,较光程差按1/4波长递增的国际动镜四步扫描模式,具有实时、精确、高效、良好的航天环境安定性、适合快速变化光谱探测等显著特色。该研究对自主发展国际领先水平的星载大气光学探测技术,确定大气O3浓度的变化以及它的全球循环收支和气候效应,具有重大的科学意义和广阔应用前景。. 本项目研究进展与取得成果如下:. 理论研究:研究和创立了平流层臭氧和大气风场(风速、温度和大气成分)被动式静态遥感探测新原理、新方法、新技术,建立了近红外静态风成像干涉仪总体方案;开展了宽场、消色差、温度补偿理论与模拟,系统总体性能、通量、调制度与信噪比分析等研究工作。. 仪器研制:完成了近红外静态风成像干涉仪光、机、电一体化设计,地面模拟星载探测实验方案论证,风场模拟频移系统光、机、电设计、加工与装调;完成了近红外静态风成像干涉仪原理样机光、机、电加工、装调、检测定标及模拟星载探测实验。. 软件开发:完成了风场速度、温度、臭氧浓度反演理论及程序软件;建立了风场和臭氧反演理论体系及算法,开展了仪器正演模型的开发及正演模拟,完成了风场和臭氧反演模型以及反演程序架构的开发与验证。. 发表SCI论文34篇,EI论文10篇;获授权发明专利12项,申请发明专利5项;出版专著1部;培养研究生35名;举办国际会议1次,参加国内外学术会议23场,作特邀报告5篇;获国家、省(部)相关奖励3项。
{{i.achievement_title}}
数据更新时间:2023-05-31
坚果破壳取仁与包装生产线控制系统设计
掘进工作面局部通风风筒悬挂位置的数值模拟
空气电晕放电发展过程的特征发射光谱分析与放电识别
瞬态波位移场计算方法在相控阵声场模拟中的实验验证
混采地震数据高效高精度分离处理方法研究进展
高层大气风场遥感的干涉成像探测技术研究
干涉法大气风场被动探测技术研究
近红外单光子探测与成像新技术与新方法研究
平流层臭氧激光探测研究