Quantum cutting is a means radically improving the luminous efficiency of the phosphor materials. Efficient broadband near-ultraviolet quantum cutting down-conversion, is an effective way developing solar cells, ecological agricultural light-conversion agent and other photonic applications. In order to obtain efficient broadband near-ultraviolet absorption and efficient quantum cutting down-conversion efficiency simultaneously, novel semiconductor oxide/rare earth fluoride coating/inserting micro-nano-composite materials will be prepared in the presently applying project, with using the special thermal oxidation method. The composite structure ensures the effective sensitization of ZnO to rare earth ions and is conducive to light-emitting of rare earth ions due to the fluoride matrix environment for rare earth ions. The composite structure materials also refers a way to regulate the local environmnent of rare earth ions in a certain degree. Therefore, it is expected to achieve a perfect combination of efficient broadband near-ultraviolet absorption of semiconductor oxide with efficient quantum cutting and light emission efficiency of rare earth fluoride. In this project, the self-assembly processes for semiconductor oxide/rare earth fluoride composite-structure material will be developed. The methods for controlling and adjusting various types of defects in semiconductor oxide will be explored. The energy transfer and quantum cutting mechanisms between semiconductor oxide and rare earth ion will be investigated in detail. The synergistic effect between the different quantum cutting processes will be searched. The optimal broadband near-ultraviolet quantum cutting down-conversion is expected to be achieved. The investigation on semiconductor oxide/rare earth fluoride composite structure is possible to break through the bottleneck of the near-ultraviolet quantum cutting technology, promoting it forward to the practical application.
量子剪裁是荧光材料发光效率革命性提高的突破口。宽带近紫外高效量子剪裁下转换是发展太阳能电池、生态农用转光剂等光子应用技术的有效途径。为同时满足量子剪裁材料宽带近紫外高效吸收与量子剪裁下转换高效输出的双重要求,本项目将发展特殊的热氧化工艺,制备新型半导体氧化物/稀土氟化物的包覆与镶嵌型复合微纳材料。它既保障半导体氧化物对稀土离子的有效敏化,又使稀土处在有利于发光的氟化物基质,并可实现对稀土离子局域环境的适度调控,从而可望将半导体氧化物的高效宽带紫外吸收特性与稀土氟化物的高效量子剪裁及光发射效率实现完美结合。项目将发展半导体氧化物/稀土氟化物复合材料的自组装合成工艺,探索半导体氧化物各类缺陷的调控方法,研究半导体氧化物与稀土离子间的能量传递与量子剪裁机制,寻找各种量子剪裁过程之间的协同效应,实现最优化的宽带近紫外量子剪裁下转换。项目的开展有望突破近紫外量子剪裁的技术瓶颈,并促进其向实用化迈进。
宽带近紫外高效转光材料在太阳能电池、生态农业、紫外探测等领域有重要的应用前景。本项目围绕紫外宽带高效转光材料制备工艺、发光性能与发光机理开展研究。探索了包括复合材料在内的多个体系的发光材料合成工艺与制备方法,制备了一系类发光材料。实现了g-C3N4: Yb复合材料的200-450nm宽带激发下的近红外发光。获得了Mn4+离子在250-550nm范围激发下向其它稀土离子的高效敏化与近红外发光。观测到Mn4+、Cr3+共掺杂钛酸盐中的双激活中心的协同发光。分别实现了Ho3+、Sm3+、Pr3+、Er3+离子与Yb3+离子组合在氧化物基质中的量子剪裁近红外发光,观测到了一些新颖的量子剪裁发光现象。分析了Mn4+向稀土离子的敏化性能与机制,评估了其向Yb3+、Nd3+离子的敏化能量传递效率。讨论了发光材料中量子剪裁的通道与机理,发展了一种估算量子剪裁效率的方法。寻找到了一些拓展激发带宽、提高发光效率的技术途径。研制了一些具有潜在应用价值的发光与光学材料。项目共发表SCI/EI论文19篇,授权发明专利3项。
{{i.achievement_title}}
数据更新时间:2023-05-31
中温固体氧化物燃料电池复合阴极材料LaBiMn_2O_6-Sm_(0.2)Ce_(0.8)O_(1.9)的制备与电化学性质
萃取过程中微观到宏观的多尺度超分子组装 --离子液体的特异性功能
氧化应激与自噬
血管内皮细胞线粒体动力学相关功能与心血管疾病关系的研究进展
综述:基于轨道角动量光子态的高维量子密钥分发
稀土发光的量子剪裁及能量传递研究
LSPR半导体-稀土掺杂氟化物纳米复合材料的可控制备与上转换发光增强的研究
超快激光微纳加工复合热氧化制备自支撑金属氧化物纳米线多尺度图案化结构与功能化研究
真空紫外光子的量子剪裁与新型高效稀土发光材料的设计