Nonlinear flutter energy harvesting has become a new way of wind energy utilization. To solve the deficiency problem in low frequency nonlinear flutter energy harvesting and the inherent fatigue problem of elastic components during the long term sustained flutter motion, a novel electromagnetoaeroelastic energy harvesting system is proposed with the magnetically levitated airfoil as its key component. To study the multiphysics problem of electro-magneto-fluid-structure interaction in this newly emerging interdisciplinary field, we will first establish the coupled multiphysics model for the electromagnetoaeroelastic energy harvesting system, next investigate the influence of the mechanical, electric and magnetic parameters on the coupled system's nonlinear flutter characteristics and the harvested power, and then predict the complex nonlinear flutter characteristics and the energy harvesting efficiency considering the dynamic stall effect. Ground and wind tunnel tests will be developed accompanied with theoretical modeling and analysis to understand the coupling mechanism of the multiphysics of electro-magneto-fluid-structure interaction in the electromagnetoaeroelastic energy harvesting system, illustrate the effects of the system's parameters on its nonlinear flutter characteristics as well as its energy harvesting performance under this mechanism, and clarify the effect of dynamic stall nonlinearity on the system's nonlinear flutter characteristics and its energy harvesting performance. Optimization design framework for the electromagnetoaeroelastic energy harvesting system will be developed to design high efficiency electromagnetoaeroelastic energy harvesting system. With thoroughly theoretical, experimental and optimization study on the complex nonlinear dynamic phenomenon due to electro-magneto-fluid-structure interaction in the electromagnetoaeroelastic energy harvesting system, this project will play a significant role in developing new electromagnetoaeroelastic energy harvesting system, which will also be very helpful in stimulating the interdisciplinary research between aeroelasticity and electromagnetism.
非线性颤振能量收集已成为风能利用的新途径,为解决其中的弹性支持结构疲劳问题及低频能量收集效率问题,提出一种以磁浮翼面为核心的新型电磁感应气动弹性能量收集系统,针对其中蕴含的电-磁-流-固多场耦合问题,通过对电磁气动弹性能量收集系统的多场耦合建模、非线性颤振特性及能量收集功率的参数分析、动态失速下的能量收集效能分析以及风洞实验验证,阐明电磁气动弹性能量收集系统的电-磁-流-固多场耦合机制,以及在此机制作用下,机、电、磁参数对系统非线性颤振特性和能量收集功率的影响规律,弄清动态失速非线性对系统非线性颤振特性和能量收集效能的影响,构建电磁气动弹性能量收集系统的优化设计框架,实现高效的电磁气动弹性能量收集系统的优化设计。本项目通过对电磁气动弹性能量收集中电-磁-流-固耦合复杂非线性动力学问题的分析、实验与优化研究,对发展新型电磁气动弹性能量收集技术,促进气动弹性力学和电磁学的学科交叉具有重要意义。
本研究基于风致振动气动弹性系统中的非线性颤振现象,提出了基于磁力耦合结构的电磁流固耦合气动弹性能量收集系统,形成了一整套系统的磁力非线性气动弹性耦合建模分析方法和实验验证手段以及磁耦合气动弹性能量收集系统的设计方法。设计了一类带有非线性磁耦合效应的气动弹性能量收集系统结构,开展了详细的理论建模、分析,研究了机、电、磁参数对非线性颤振特性及能量收集功率的影响规律,并研究了失速下的非线性颤振特性和能量收集效率。完成了非线性颤振能量收集系统的地面振动实验和风洞颤振实验,定量测量了能量收集系统的非线性气动弹性响应特性和输出功率,验证了理论分析结果。在此基础上,考虑磁力非线性对能量收集系统的影响,利用磁耦合非线性的结构设计方法,提出了非线性多稳态的气动弹性能量收集系统构型,分别进行了颤振特性和非线性极限环响应特性的理论建模分析研究,并完成了风洞试验验证。本项目为气流中应用的能量收集器提供了创新的设计思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
宽弦高速跨音风扇颤振特性研究
动物响应亚磁场的生化和分子机制
基于抚育间伐效应的红松人工林枝条密度模型
简化的滤波器查找表与神经网络联合预失真方法
高超声速飞行器流固热多场耦合问题研究
低速重载油膜的磁流固多场耦合润滑机理与界面力学行为
铁电/铁磁复合薄膜多场耦合特性的相场研究
广义电磁热弹扩散问题多场耦合行为研究