In order to overcome the working precision of failure limitation of the space rolling bearing, while the typical fault diagnosis method can not meet the limitation of the demand. A new method for evaluating the bearing life state running in the ground simulated vacuum with axial load and rotational speed coupling condition based on overcomplete sparse decomposition is proposed. The bearing vibration signal is decomposed by the overcomplete sparse decomposition method, the weak wear signal is extracted and the failure mechanism, the contained wear characteristics in the decomposed signal and the life status of the characterization are analyzed. The research method is as follows: the method of analyzing the macro and micro friction performance of the solid lubricating particles under vacuum environment is established, and the theoretical model of the lubrication is established to realize the friction performance of the bearing. The time scale dynamic modeling method considering the coupling of the variables is proposed, the deformation and slip mechanism is been realized, and the coupling condition of bearing is been decoupled. The criterion of multiple weight failure failure is put forward to establish the bearing wear damage accumulation model to make sure the stress application criterion and the determination of boundary. A fuzzy stochastic variational analysis method is proposed to establish nonlinear wear model to realize the characterization of wear characteristics. A method of determining the energy change of vibration signal is proposed, which reveals the wear energy attribute of the signal, and realizes the time-varying signal and wear life mapping to evaluate and develop the corresponding system. This will help achieving the choice of the high quality bearing and optimize the design of space bearing to ensure the stability of spacecraft, reliable operation, has important theoretical and economic value.
为了克服空间滚动轴承精度失效要求苛刻,典型故障诊断方法无法满足需求的局限性,提出基于超完备稀疏分解信号解析的地面模拟真空轴向载荷、转速耦合工况下寿命状态评估新方法,利用稀疏分解轴承振动信号,提取微弱磨损信号并明确解析其产生机理、蕴含的特征及表征的寿命状态。具体研究思路为:提出真空环境下固体润滑颗粒宏、微观摩擦性能分析方法,建立润滑理论模型,实现轴承摩擦性能的揭示;提出考虑变量耦合的时标动力学建模方法,揭示零件间的变形和滑移机理,实现耦合工况的解耦;提出多元加权失效判定准则,建立磨损损伤累积模型,实现应力施加准则和边界的确定;提出复杂因素模糊随机变分分析方法,建立非线性磨损模型,实现磨损特性的表征;提出振动信号累积能量变化判定方法,揭示信号的磨损能量属性,实现时变信号与磨损寿命映射评估并研发相应系统。这对实现轴承的筛选和优化设计,保证空间飞行器的稳定、可靠运行,具有重要的理论意义和经济价值。
空间滚动轴承是空间飞行器关键零部件,为了保障空间飞行器安全运行,开展高可靠、长寿命的空间活动零部件技术研究意义重大。针对空间滚动轴承精度失效、典型故障诊断方法无法满足需求的局限性,提出基于超完备稀疏分解信号解析的地面模拟真空轴向载荷、转速耦合工况下寿命状态评估新方法,利用稀疏分解轴承振动信号,提取微弱磨损信号并明确解析其产生机理、蕴含的特征及表征的寿命状态。该课题形成了基于超完备稀疏分解的理论框架,该理论及其方法实现了地面模拟真空环境下空间滚动轴承摩擦性能的揭示、耦合工况的解耦、应力施加准则和边界的确定、磨损特性的表征以及时变信号与磨损寿命映射评估,并用到实际应用中,轴承寿命状态识别率达到80%,完成了空间滚动轴承动力学模型的建模,并完成了轴承状态分析软件一套。本项目为采用理论模型与现场数据相结合,为航天飞行器固体润滑空间滚动轴承寿命状态识别和优化设计提供了有价值的手段,有望推动固体润滑空间滚动轴承的性能提升和可靠性的提升。. 项目执行期间团队成员发表相关的高水平论文34篇,授权相关的发明专利4项。课题相关研究成果获得中国航海学会2020年度科技进步二等奖1项和2018年长江局科技奖励1等奖,项目申请人获得重庆市三百科技创新领军人才、重庆市学术带头人后备人选、2020年重庆市留创计划创新类项目和重庆市高校创新团队项目经费支持,作为组织委员会主席牵头举办第六届机电控制技术与交通运输国际学术会议一场。以第一主编在人民交通出版社出版“基于人工智能的滚动轴承故障诊断及工程应用”专著一本,以第一作者或通讯作者发表SCI论文8篇,包括SCI一区IEEE Transactions On Industrial Electronics 1篇,一篇论文获得IEEE可靠性学会重庆分会2021年年会优秀论文奖,EI 11篇,其中机械工程学报2篇,一篇论文获得《机械工程学报》2021年第1期最受关注论文榜首,授权发明专利3项,培养相关的博士研究生1名,硕士研究生5名。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
农超对接模式中利益分配问题研究
粗颗粒土的静止土压力系数非线性分析与计算方法
硬件木马:关键问题研究进展及新动向
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
深度强化学习模式下空间滚动轴承变工况寿命状态表征和预测方法研究
深度领域适应的空间滚动轴承变工况寿命状态匹配表征和预测方法
基于多核超球支持向量机的滚动轴承状态定量评估方法研究
不同工况振动谱的空间滚动轴承寿命同尺度表征和预测方法研究