The placement of osseointegrated dental implants is considered an important option to replace missing teeth among the partially edentulous or edentulous patients, however, the successful rate of the dental implants placed in the compromised region with limited alveolar bone volume or poor bone quality, especially at the maxillary posterior region under the occlusal force, is still comparatively lower. Faster and stronger osseointegration between the dental implant and living bone tissue is still required. It is widely accepted that porous biomaterials can.enhance the material-bone contact areas and form better biological stabilization, but this complicated 3D structure is so far difficult to be manufactured by conventional machining system. In this study, the trabecular porous structure on dental implant surface with was designed by computer-aided design method and reverse engineering technology, and then printed layer by layer based on the selective laser melting technology. To further enhance the bioactivity of the titanium surface, the double bioactive layer was designed and fabricated to occupy.the space inside the trabecular meshwork. The combination of the vascular endothelial growth factor/nano-CaP/TiO2 nanotubes array on the titanium surface was called inner bioactive layer. The formation of the bone morphogenetic protein-2/chitosan hydrogel sealed the pores was called outer bioactive layer. The double-bioactive layer inside the trabecular meshwork was explored by a series of in vivo and in vitro experiments in order to control the release of the growing factors at different stages during the osseointegration. Finally, the models of.contact osseointegration and distance osseointegration were set to illuminate the mechanism of the osseointegration at the protein and molecular level.
尽管口腔种植技术已成为修复牙齿缺失的重要治疗手段,但种植体在骨量不足或骨质欠佳区域(特别是上颌后牙区)的成功率仍相对较低,骨组织与种植体的结合能力需要得到进一步的加快和增强。将种植体表面设计成开放的多孔结构有助于获得更大的材料-骨结合表面积和形成更良好的生物稳定性,但是复杂的微小三维结构难以通过传统工艺实现。因此,本项目通过逆向工程技术将骨小梁的百微米多孔结构设计到实心种植体表面,并采用激光快速成型技术精准打印;为进一步增强种植体表面的成骨活性,项目还巧妙利用骨小梁多孔内部空间构建双活性层:在钛金属表面制备血管内皮生长因子/纳米CaP/二氧化钛纳米管的内活性层;再用骨形态发生蛋白-2/壳聚糖水凝胶封闭多孔结构作为外活性层。探索该多孔内部的双活性层通过控制生长因子在成骨的不同时期的释放,对骨结合过程进行调控的可行性,在蛋白和分子水平阐明其在接触和距离成骨条件下对成骨调控的机制。
尽管种植技术已成为修复牙齿缺失的重要治疗手段,但种植体在骨量不足或骨质欠佳区域(特别是上颌后牙区)的成功率仍相对较低,骨组织与种植体的结合能力需要得到进一步的加快和增强,同时必须保证植入材料的整体强度和避免表面涂层材料出现分离。将种植体表面设计成开放的多孔结构有助于获得更大的材料-骨结合表面积和形成更良好的生物稳定性,但复杂的微小三维结构难以通过传统工艺实现。因此,本项目通过逆向工程技术将骨小梁的百微米多孔采用TPMS(Triply periodic minimal surface)结构添加到实心种植体表面;并采用有限元模拟的静态和动态疲劳负荷,对设计的TPMS结构进行优化和反馈;激光快速成型技术精准打印。为进一步增强种植体表面的成骨活性,项目还利用骨小梁多孔空间结构和3D打印功能梯度材料的方式,对于骨植入材料生物力学性能和成骨性能进行调节。首先是采用TPMS结构的孔隙梯度,调节和平衡植入材料的骨结合面积以及弹性模量。目前申请人的细胞和动物实验表明TPMS结构的梯度孔隙是最有利于3D打印的设计方式,液体渗透性好,内向性成骨效果优异,同时保留种植体承载咬合力的实心结构。第二,通过3D打印技术成功制作出羟基磷灰石HA和钛粉颗粒混合梯度材料,从外向内HA的含量逐渐增加,HA颗粒均匀分布在钛金相交界。细胞和动物实验发现通过材料梯度的改变对成骨进行调控,硬度、弹性模量、硬度,压缩强度等性能也可以通过材料梯度进行调节。无论是牙科种植体还是骨科金属植入材料都具有复杂个性化的结构(表层和内部,与机体不同的接触结合部位等)需要不同的生物力学性能和成骨诱导性能。所以该研究可以应用在口腔种植体的设计,以及骨科植入材料的设计,改善均质植入材料一层不变的生物性能和力学特性,也可以避免添加涂层或者多层结构容易出现的体内受力后涂层脱落和溶解导致的失败,具有良好的应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
Combining Spectral Unmixing and 3D/2D Dense Networks with Early-Exiting Strategy for Hyperspectral Image Classification
Facile Fabrication of Hollow Hydrogel Microfiber via 3D Printing-Assisted Microfluidics and Its Application as a Biomimetic Blood Capillary
3D-printed highly ordered Ti networks-based boron-doped diamond: An unprecedented robust electrochemical oxidation anode for decomposition of refractory organics
An on-demand construction method of disaster scenes for multilevel users
饮水型慢性氟中毒大鼠硬组织氟蓄积的对比研究
3D打印结合细胞片层技术构建“阵列式”组织工程骨修复大面积颌骨缺损的可行性研究
纳米骨浆结合多喷嘴低温打印技术构建血管化骨诱导材料修复难治性骨缺损
3D打印钛合金(Ti6Al4V)功能梯度类骨小梁状网格结构及其性能控制研究
3D打印构建个性化组织工程颌骨体内可降解支架模型及其成骨机制的研究