关于有删失数据存在的常用生存模型中极大似然比的精确和渐进分布

基本信息
批准号:11801459
项目类别:青年科学基金项目
资助金额:20.00
负责人:朱晓俊
学科分类:
依托单位:西交利物浦大学
批准年份:2018
结题年份:2021
起止时间:2019-01-01 - 2021-12-31
项目状态: 已结题
项目参与者:刘佳骏
关键词:
精确分布生存分析删失数据极大似然比检验渐进分布
结项摘要

The likelihood ratio test is commonly used in hypothesis test. Due to the complicated form of the likelihood ratio, it prevents us from finding its exact distribution. Under some regularities, usually the chi-square distribution can be used to approximate it. This approximation works well with a large sample size. However, for a small sample, inaccuracy may occur. For this reason, it is important and necessary to find the exact distribution of the likelihood ratio for a small sample..In this project, we will start from the exponential distribution, one of the most widely used lifetime distributions in reliability. We would like to derive the exact distribution of the likelihood ratio for testing the scale parameter of one exponential population based on different censored data. The null hypothesis here is \theta=\theta_0. For exponential distribution, if the data is a complete, Type-II censored or progressively Type-II censored sample, then the exact distribution is already known. However, for some other general censored samples, the current methodology cannot be used. Here, we will present a more general way to find the exact distribution which can not only work for these special cases, but also for a more general censored form. After obtaining the exact distribution, we will show how to utilize it to obtain the asymptotic distribution, which will be efficient in computation when sample size is large. Through the similar approach, its power function can be determined. The result will then be extended to a two-parameter exponential distribution. Note, the support of a random variable from a two-parameter exponential distribution depends on the unknown parameter, therefore the asymptotic distribution of the likelihood ratio may not be chi-square distribution anymore. .Next, we will discuss the likelihood ratio test for two exponential populations based on combined censored data. It is the nature of interest to test the equality of two populations, i.e., if these two populations follow the same exponential distribution. However, to the best of our knowledge, there is no work on the exact distribution of likelihood ratio in this field so far. Many researchers have taken a lot of effort on this problem, but can only find some asymptotic distributions to approximate it. They shared their experience and mentioned the problems need to be overcame. Based on their work, we will derive both exact and asymptotic distributions of the likelihood ratio and then use them to determine the power function. By using the power function, we will also work on the optimal design..Finally, we will extend the idea to several widely used survival models, for example, accelerating life test, competing risk model, etc. On the other hand, instead of using the exponential assumption, we will use some other popular distributions, for example, gamma distribution, Weibull distribution, Laplace distribution, etc..During this project, Monte Carlo simulation will be carried out to check the accuracy of the results derived.

在假设检验中,极大似然比检验是最常用的手段。在数据量足够大且满足一定条件时,可用卡方分布进行拟合。但在数据量稀少时,盲目使用卡方分布拟合,会造成一定的误差。在大量文献中,研究者们通过不同的渐进分布来逼近它,却无法攻破精确分布的难题。本项目致力于完善这一空缺,为使研究陈果更有意义,我们会考虑不同数据删失的情况。.我们从常用的一参及二参指数分布入手,检验它的参数是否等于给定的值。除了在数据齐全及一些个别特殊删失情况下,极大似然比的精确分布都是未知的,甚至有时连卡方分布的渐进都会失效。我们将会给出一个更通用的方法来确定极大似然比的精确及渐进分布,并推导出相应的功效函数分布。此后我们将会对两组联合删失的数据进行讨论,研究其是否来自同一分布,这是一极为常见的假设检验,同样该检验极大似然比的精确分布至今未被攻克,也是我们期待解决的问题。最后我们会把这些理论应用到一些常见的生存模型并拓展到其他分布中。

项目摘要

在假设检验中,极大似然比检验是最常用的手段。在数据量足够大且满足一定条件时,可用卡方分布进行拟合。但在数据量稀少时,盲目使用卡方分布拟合,会造成一定的误差。在大量文献中,研究者们通过不同的渐进分布来逼近它,却无法攻破精确分布的难题。本项目致力于完善这一空缺,为使研究陈果更有意义,我们会考虑不同数据删失的情况。.我们从常用的指数分布入手,检验它的参数是否等于给定的值。除了在数据齐全及一些个别特殊删失情况下,极大似然比的精确分布都是未知的,甚至有时连卡方分布的渐进都会失效。我们给出了一个更通用的方法来确定极大似然比的精确及渐进分布,并推导出相应的功效函数分布。此后我们对两组联合删失的数据展开了讨论,研究其是否来自同一指数分布,这是一极为常见的假设检验,这也是检验极大似然比的精确分布第一次被攻克。在此基础上,我们还将所得理论拓展到了一些常用模型,比如加速寿命试验。这些假设检验在生物统计,可靠性研究等常见问题中有广泛使用,因此我们的结论具有很强的应用性。同时我们还把部分结论推广到了其他分布,例如,拉普拉斯分布。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

论大数据环境对情报学发展的影响

论大数据环境对情报学发展的影响

DOI:
发表时间:2017
3

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

DOI:10.19713/j.cnki.43-1423/u.t20201185
发表时间:2021
4

硬件木马:关键问题研究进展及新动向

硬件木马:关键问题研究进展及新动向

DOI:
发表时间:2018
5

基于SSVEP 直接脑控机器人方向和速度研究

基于SSVEP 直接脑控机器人方向和速度研究

DOI:10.16383/j.aas.2016.c150880
发表时间:2016

朱晓俊的其他基金

相似国自然基金

1

平均经验似然方法在右删失数据中的统计推断

批准号:11701484
批准年份:2017
负责人:梁薇
学科分类:A0403
资助金额:23.00
项目类别:青年科学基金项目
2

有讨厌参数模型的经验似然和拟似然及基本有效性的研究

批准号:10371059
批准年份:2003
负责人:林路
学科分类:A0402
资助金额:16.00
项目类别:面上项目
3

基于极大Lq似然估计的P范分布混合模型的估计理论研究

批准号:41374017
批准年份:2013
负责人:潘雄
学科分类:D0401
资助金额:75.00
项目类别:面上项目
4

关于非线性统计模型的近似似然推断

批准号:10271049
批准年份:2002
负责人:宋立新
学科分类:A0403
资助金额:13.50
项目类别:面上项目