As the commonest and most malignant primary central nervous system tumor, glioblastoma has defied the improvement of its management and prognosis for decades. Recently, immunotherapy pertaining to inhibition of programmed death 1 (PD-1) has emerged as a promising approach to resolve the current stalemate in glioblastoma (GBM) treatment, nonetheless, the current PD-1 based therapeutic tools in a dearth of permanent PD-1 knock-off were believed to not fulfill the tempting potential of PD-1-based therapy in GBM management. Strategically knocking out of PDCD1 genome (the programming gene for PD-1) using CRISPR/Cas 9 is postulated to afford a similar consequence as does PD-1 inhibition, which may also produce longer activation of T lymphocytes. Previously, the applicant’s works validated the utilities of polyethylene glycol (PEG)/polylysine (pLys) for construction of an efficient and safe delivery system for therapeutic nucleic acids. Our preliminary experiment utilized a CD3-targeted PEG/pLys polymer-CRISPR/Cas 9 system, which could result appreciable targeting activity specifically to T-lymphocytes, capable of silencing the expression of PD-1 in these T-lymphocytes, followed by T-lymphocytes activation. In consequence, the activated T-lymphocytes effectively induced the death of GBM cells. In reference to the aforementioned results, the current study aims to explore the insight into its in vivo performance, and the underlying molecular mechanism. To sum up, a synthetic ensemble of genetic, nanotechnology and immunotherapy is projected to press the arch of glioblastoma management paradigm, emphasizing T-lymphocyte-based GBM immunotherapy as a novel therapeutic avenue.
胶质母细胞瘤(GBM)作为恶性程度最高,也是最常见的原发性中枢神经系统肿瘤,其治疗与预后多年没有大的改善。新兴的程序性死亡受体1(PD-1)抑制免疫疗法可能是GBM治疗困境的破局者,然而其效能可能抑制了其效果的充分展现。将T淋巴细胞中的PD-1的编码基因PDCD1利用CRISPR/Cas9技术敲除能达到与PD-1抑制类似的T淋巴细胞激活效果,且其作用更加持久。申请人前期研究发现利用聚乙二醇/聚赖氨酸聚合物进行基因编辑效率高,安全性好,而本项目预实验利用特异靶向CD3受体的聚乙二醇/聚赖氨酸聚合物PDCD1 CRISPR/Cas9系统敲除T淋巴细胞PD-1表达,激活了T淋巴细胞并提高了其杀伤GBM细胞的效果,且本系统稳定性高,安全性好。本研究拟在此基础上研究本聚合物CRISPR/Cas9系统的体内GBM杀伤效果,并初步研究其机制。这将为基于T淋巴细胞的GBM免疫治疗提供新的手段和思路。
本项目构建靶向聚合物统可于血液稳定存在并可稳定携带RNA,从而潜在地激活肿瘤免疫作用。本项目将纳米技术、基因治疗与免疫治疗有机结合,可能为胶质瘤治疗提供新的手段,同时也将大大提高基于T细胞的胶质瘤免疫治疗效率,具有重要临床应用价值。具体到本项目已实现a.设计了针对脑胶质瘤的mRNA递送系统实现肿瘤靶向输送和蛋白质表达;b.优化mRNA递送系统的表面PEG化程度,实现cRGD靶向肿瘤组织的最大化;c优化了含黏性尾部的mRNA制备方法以及与黏性寡聚核糖核酸的杂化方法,验证了杂化后mRNA的蛋白质表达活性。在初步完成上述目标后,项目根据最新研究成果,研究者团队逐渐发现目前恶性肿瘤的个体化疫苗具备很好的研究和转化价值,mRNA的主流载体为聚合物脂质体,即使用支化分子复合mRNA并使用脂质体将复合物包裹的方法构建稳定的mRNA递送体系,同时通过对抗原提呈细胞(例如树突状细胞)中的进行基因递送的方法使其表面表达相应抗原及免疫应激信号分子,并有效激活抗癌免疫细胞进而治疗癌症。研究者团队研随后研发的支化分子/脂质分子所构成的多层纳米组合结构可以有效地递送多种核酸分子(包括,例如,编码一个或更多的癌症或肿瘤特异性抗原的mRNA等)。通过阳离子支化分子的静电复合作用将大分子核酸包装在“核心”结构中, 随后使用两亲性的脂质分子将该“核心”结构包裹于脂双层的“壳”中。该多层纳米组合结构可将抗原表达基因传递到一个或多个选定的哺乳动物细胞,例如但不限于一种或多种抗原呈递细胞,支化分子与脂双层结构的存在可有效保护抗原呈递核酸分子被组织酶降解。此外,亲脂性壳层结构还提供了通过抗原呈递细胞的有效通道,并可通过调节其组成成分以更加有效的激活抗原呈递细胞,可表现出更强的抗肿瘤免疫效果。最终项目组团队初步验证了上述假说的合理性,构建了相应的个体化PDX小鼠模型,并拟在上述研究成果基础上进一步深入肿瘤免疫治疗个体化方案。
{{i.achievement_title}}
数据更新时间:2023-05-31
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function
七羟基异黄酮通过 Id1 影响结直肠癌细胞增殖
Mcl-1介导的γδ T细胞凋亡调控对神经母细胞瘤的杀伤作用研究
全反式维甲酸靶向增强自杀基因对髓母细胞瘤的杀伤作用
质粒介导的RNA干涉对多形性胶质母细胞瘤VEGF表达的抑制作用研究
利用CRISPR/Cas9靶向剪辑HPV16和PD1/PD-L1基因抑制宫颈癌的作用及机制研究