Recent studies demonstrated that, the altered metabolism induced by low oxygen in tumor microenvironment is a key metabolic hallmark of cancer, which contributed to progression and metastasis of tumor cells. However, the regulatory mechanism in metastasis of breast cancer is poorly understood. In our previous studies, we found that NQO1, the key molecule of cell oxidative stress reaction, was overexpressed in breast cancer which was closely related with prognosis of patients. We also found that the natural quinone β-lapachone induced NQO1-dependent cytotoxicity and regulatd aerobic glycolysis pathway in breast cancer cells.Taken together, we plan to further investigate the relationship between NQO1 and aerobic glycolysis、 Mitochondrial oxidative phosphorylation and energy metabolism in breast cancer in vitro and in vivo, explore the mechanism of NQO1-dependent anti-tumor therapy regulating metabolic reprogramming in tumor metastasis. These will not only extend the theoretical basis of metabolic reprogramming regulation in breast cancer, but also provide new intervention targets for individualized treatment of breast cancer patients.
目前研究表明,体内缺氧等应激微环境诱导肿瘤细胞出现的异常代谢表型是恶性肿瘤细胞重要特征之一,与肿瘤的浸润和转移密切相关,但具体调控机制尚不明确。项目组前期工作发现,调节细胞氧化应激反应的关键分子NQO1在乳腺癌患者肿瘤组织中的异常高表达与患者预后密切相关;基于NQO1的抗肿瘤药物β-lap在明显抑制乳腺癌细胞的增殖与侵袭能力的同时,参与有氧糖酵解途径的调节。因此,本项目拟通过细胞实验和裸鼠模型建立,在体内外深入分析NQO1与乳腺癌细胞有氧糖酵解、线粒体氧化磷酸化及微环境能量代谢的关系,探讨基于NQO1的抗肿瘤治疗介导肿瘤微环境糖代谢重编程进而调控乳腺癌增殖侵袭的分子机制,为乳腺癌靶点药物的开发及乳腺癌个体化治疗提供实验依据。
近年研究显示,肿瘤微环境是肿瘤恶变并发生转移的重要原因。在体内缺氧等应激微环境下,肿瘤细胞的能量及物质代谢方式发生异常改变继而进行代谢重编程;由于代谢特征改变所致的特异肿瘤微环境则进一步促进了肿瘤的浸润与转移。目前肿瘤细胞糖代谢重编程的调控机制尚不明确。本项目以肿瘤细胞Warburg Effect为切入点,重在探讨调节细胞氧化应激反应的关键分子NQO1在乳腺癌细胞有氧糖酵解中的作用,进一步明确基于NQO1的抗肿瘤治疗介导乳腺癌糖代谢重编程进而影响乳腺癌细胞增殖及侵袭的分子机制,为乳腺癌的靶向治疗提供理论和实验依据。.研究主要应用分子生物学技术、蛋白质组学及生物信息学等技术,通过细胞实验、动物模型、临床组织标本等较深入的探讨了NQO1与有氧糖酵解、线粒体氧化磷酸化及微环境能量代谢的关系,揭示了基于NQO1的抗肿瘤治疗介导糖代谢重编程调控乳腺癌侵袭转移的分子机制。简要总结如下:(1)NQO1通过介导EMT途径促进乳腺癌细胞的迁移、浸润。(2)NQO1通过糖代谢重编程调控乳腺癌细胞的恶性进展:NQO1过表达能显著提升乳腺癌细胞对葡萄糖的利用情况、乳酸及ATP生成情况,同时上调代谢标志物的表达水平;糖代谢抑制剂处理后,抑制乳腺癌细胞的增殖、迁移及浸润能力的同时抑制了NQO1诱导的EMT进程;NQO1沉默后验证了其相反作用。(3)基于NQO1的抗肿瘤药物β-拉帕醌对乳腺癌的抑制作用:在NQO1高表达的乳腺癌细胞中,β-拉帕醌可介导PI3K信号通路抑制其增殖、侵袭及血管生成;与PI3K/Akt双靶点抑制剂BEZ235联用,则具有协同抑制作用。 (4)NQO1通过作用下游靶蛋白进而参与调控乳腺癌的EMT及糖代谢重编程:NQO1以PKLR作为下游靶蛋白,沉默PKLR基因可有效抑制NQO1所诱导的糖代谢重编程及EMT进程;NQO1与PKLR的表达水平在乳腺癌组织及细胞中呈显著的正相关,提示NQO1/PKLR信号轴在乳腺癌细胞的恶性进展中发挥关键作用;NQO1介导PKM2参与调控乳腺癌细胞的增殖及侵袭能力。本项目为乳腺癌转移控制新的靶向药物选择及乳腺癌患者的个体化治疗提供理论与实验依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
肥胖型少弱精子症的发病机制及中医调体防治
Robust H-infinity Control for ICPT Process With Coil Misalignment and Time Delay: A Sojourn-Probability-Based Switching Case
Inclusive production of fully-charmed 1+- tetraquark at B factory
中温固体氧化物燃料电池复合阴极材料LaBiMn_2O_6-Sm_(0.2)Ce_(0.8)O_(1.9)的制备与电化学性质
基于LS-SVM香梨可溶性糖的近红外光谱快速检测
糖代谢重编程在小胶质细胞持续活化中的作用和调控机制研究
基于TIL-T糖代谢重编程研究参芪扶正调节肿瘤免疫机制
基于糖代谢重编程重塑肿瘤微环境探讨紫草素调控小细胞肺癌免疫应答的机制研究
FADD磷酸化参与线粒体脑肌病糖代谢重编程及其调控机制研究