Supported by the national natural science foundation of China we have studied the.following symplectic topology questions. We defined the Gromov-Witten invariants.on noncompact semipositive geometrically bounded symplectic manifolds and used.them to study the rigidity of Hamiltonian loops with compact support on this kind of manifolds. We also established pseudo symplectic capacity theory and related it.Gromov-Witten invariants; As applications we got a very general nonsqueezing.theorem, proved Weinstein conjecture for more large class of symplectic manifolds.and extended Biran’s Lagrangian barrier theorem to arbitrary closed symplectic.manifolds. We constructed an explicit isomorphism between Floer homology and.quantum homology on any closed symplectic manifolds. In addition we also studied.the periodic motion of a charge in a magnetic fields, and in a joint work with.Professor Long yiming we proved that the autonomous Lagrange system possess.infinitely many geometrically different periodic orbits.
Hofer几何是辛拓扑中的重要分在支,我们将研究Hamiltonian微分同胚群Ham (M, ω) 中关于Hofer度量的极小测地线猜测及这个群的直径的无穷大猜测,还将探讨辛拓扑中的流坎虏狻einstein 猜测及退化的Arnold 猜测。这些问题都为辛拓扑中的基本问题。它们睦斫庥虢饩龆杂谛镣仄说睦斫狻⑹У耐骋恍浴⑽锢砑傲ρУ纳羁倘鲜抖季哂猩钤兜囊庖濉
{{i.achievement_title}}
数据更新时间:2023-05-31
基于旋量理论的数控机床几何误差分离与补偿方法研究
综述:基于轨道角动量光子态的高维量子密钥分发
平面并联机构正运动学分析的几何建模和免消元计算
固态上转换材料制备及其性能
基于高频角位移数据的卫星平台颤振检测与影像几何质量补偿
辛拓扑与切触拓扑中一些问题的研究
轨形群胚的微分拓扑和辛拓扑及其在辛双有理几何中的应用
Kahler几何与辛拓扑中若干问题的研究
辛几何拓扑及相关问题研究