Riemann-Finsler空间是无二次限制的黎曼空间。进年来,在Finsler几何的探索上获得了许多重要进展。本项目旨在研究芬斯拉空间上调和映射的存在性和热流方法;芬斯拉空间上的全测地映射;调和同态和芬斯拉淹没的关系:Kaehler-Finsler流形上的全纯映射及调和映射和强负曲率空间的强刚性定理;调和映射的单调不等式及Liouville型结果;芬斯拉空间的等矩浸入.
{{i.achievement_title}}
数据更新时间:2023-05-31
珠江口生物中多氯萘、六氯丁二烯和五氯苯酚的含量水平和分布特征
向日葵种质资源苗期抗旱性鉴定及抗旱指标筛选
一种基于多层设计空间缩减策略的近似高维优化方法
复杂系统科学研究进展
基于MCPF算法的列车组合定位应用研究
调和映射及热流的存在性和正则性
调和映射热流中的若干问题
Pseudo-Hermitian流形上的拟调和映射及其热流
拟共形映射、Teichmuller空间与调和映射