With the increasingly serious air pollution and the gradually popular wearable electronic devices, there is a tremendous demand for the development of portable sensors from the fabrication of flexible electronics sensor devices integrated with chemical gas sensing function. It is critically important for real-time human safety protection and environmental monitoring. In order to assemble flexible film sensors with high sensing performance, it is highly desirable for the controllable fabrication of conducting polymer nanocomposite networks and their uniform deposition onto the flexible substrates. Herein, we attempt to fabricate hierarchical nanocomposite network films of conducting polymers and 2D inorganic nanomaterials on flexible stretchable substrates by in situ dilute polymerization of supramolecular assembly of the monomers of conducting polymers and 2D nanomaterials. The conducting polymer-containing nanocomposite network films could be assembled into flexible stretchable film sensor devices. The as-assembled flexible film sensors could reveal reliable flexibility, robust stretchability, and excellent sensing performance with high sensitivity, good selectivity, and excellent stability. The high gas sensing performance could be attributed to synergistic advantages of conducting polymers and 2D nanomaterials, high specific surface area for efficient adsorption/desorption of vapor analytes, the improved carrier mobility from the interconnected nanocomposite network, and the effectively exposed active surfaces. It is anticipated that this line of research can be further extended to deepen the efficient fabrication of the conducting polymer-containing nanocomposite network films, and to demonstrate the relationship between aggregation structures of polymer nanocomposites and their sensing properties. And it is expected to provide the rich theoretical basis and material basis for the development of high-performance flexible film materials and devices from the conducting polymer nanocomposites.
随着大气污染形势日益严峻和可穿戴设备逐渐步入人们的生活,开发可集成污染气体传感功能的柔性电子学传感器,是便携式传感器发展的新方向。针对高性能柔性薄膜传感器的构筑中存在的网络状结构导电高分子复合材料的可控制备和薄膜沉积组装等问题,本申请拟将基于超分子作用(如静电、氢键、π-π作用)的导电高分子单体/二维纳米复合材料组装体,通过稀溶液原位聚合沉积、聚合-表面修饰等方法,均匀沉积到预处理的柔性、可拉伸基底上,构筑网络状结构复合材料薄膜和组装器件;借助高分子复合材料的协同效应、大比表面积、网络状结构的高效信号定向传导、有效的活性传感面暴露等,实现高灵敏度、低检测限、室温稳定的薄膜传感器制备。本项目有助于揭示网络状结构高分子复合材料薄膜的生长过程和组装规律,理解高分子复合材料的聚集态结构与传感性能的作用关系,为开发可大面积制备、可潜在集成到可穿戴设备的高性能薄膜材料及器件提供材料和理论基础。
随着科技的发展,基于柔性电子学集成器件的各类智能可穿戴设备逐渐步入人们的生活。作为可实时感知环境有害气体的可贴合人体皮肤的柔性、可拉伸电子学传感器,有助于现场污染气体的高灵敏度、高选择性、快速响应的室温实时高效预警监控,是便携式传感器发展的新方向。本项目针对传感材料柔性欠佳、可拉伸性差和传感性能低等瓶颈,通过基底预拉伸和原位聚合沉积相结合的方法,设计制备了系列功能化的柔性、可拉伸、高传感性的高分子复合传感材料与器件;借助高分子复合传感材料的协同效应、大比表面积、网络状结构的高效信号定向传导、有效活性传感面暴露等,实现可潜在集成到可穿戴设备中的高灵敏度、低检测限、室温稳定、可拉伸的高性能传感检测,并探究了可拉伸的褶皱结构与在循环拉伸过程中传感性能的构效关系。相比于传统传感材料的传感灵敏度差、柔性欠佳、无可拉伸性、透明性低、检测限高,我们所构筑的室温传感材料,由于具有褶皱结构的高分子复合材料网络的存在,可实现高灵敏度(2.4 ppm-1)、柔性、可拉伸、透明、低检测限(50 ppb)的室温稳定传感。本项目有助于揭示稀溶液原位聚合沉积制备网络状结构薄膜的生长过程和组装规律,深入理解高分子纳米复合材料的聚集态结构与传感性能的作用关系,为开发可大面积制备、可潜在集成到可穿戴设备的高性能薄膜材料及器件提供材料和理论基础。在Progress in Polymer Science、Adv. Funct. Mater.、ACS Nano等期刊发表了SCI论文8篇,培养研究生9名。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
核壳异质结构铜纳米线的可控制备、导电网络构筑与性能研究
导电高分子纳米复合材料的制备及其光电转换性能的研究
具有导电纳米纤维网络结构的高分子复合材料的制备及其气敏行为研究
导电高分子薄膜的结构与性能研究