Stimuli-responsive nanomaterial has unique nanostructure and fascinating properties, such as controllable three-dimensional structure, good biocompatibility and mechanical properties, and responding to the external environment stimulation. The aim of this research project is to synthesis stimuli-responsive nanomaterial (such as mesoporous silica, mesoporous film, etc.) as bioprobe for convenient and high sensitivity determination of miRNA upon novel ECL visualization platform which combines traditional ECL biosensing and microchip technology.The development of ECL biosensor has attracted particular interest of scientists. However, the study about visual ECL biosensor is too little than respect. This project intends to carry on the study of developing ECL visualization micro-chip bio-interface and using stimuli-responsive nanomaterial as nano-container to encapsulate a lot of signal substances with probe molecule on the surface. Also, we propose to couple the amplification of stimuli-responsive nano-container with the biotechnology (such as enzyme catalyzed amplification, rolling circle amplification, DNA self-assembly etc.) to further enhance the detection signal. In addition, we plan to study the characteristics of stimuli-responsive nanomaterial in detail, explore the different trigger mechanism of various stimuli-responsive between bioprobe and target with ECL signal change, develop high specificity and high sensitivity analysis strategies. This novel ECL visualization micro-chip biosensing is introduced into the bioanalysis, which could extend the application scope of this method and provide a new avenue of tumor marker high sensitive detection.
刺激响应型纳米材料具有可控的结构,良好的生物相容性和机械性能,和对外界环境刺激做出响应等优点。本项目拟合成刺激响应型纳米材料(如介孔二氧化硅、介孔膜等)作为生物探针,并将传统ECL传感技术与微芯片技术结合,开发新型的可视化ECL平台,实现对miRNA简便而灵敏的检测。ECL生物传感器一直深受关注,而可视化的ECL传感器的研究却很少。因此本项目致力于研制直读型可视化芯片传感界面,将刺激响应型纳米材料作为纳米容器封装大量信号物质并在其表面固定探针分子,同时将纳米容器放大同生物放大技术(如酶放大、滚环扩增放大、DNA自组装等)相联合,实现信号二次放大;并深入研究刺激响应型纳米材料的特性,探索生物探针与目标物之间不同刺激响应的触发机制与ECL信号变化,发展高特异性、高灵敏的生物分析模式。将微芯片ECL传感策略引入生物分析化学领域不仅扩大其应用范围,同时也是针对肿瘤标志物提出一种全新的检测方法。
肿瘤标志物是早期发现肿瘤的线索,因此,开发具有高选择性、高灵敏度的针对肿瘤相关物的检测分析方法对临床研究和诊断上有重要意义。本研究采取多种合成方法绿色的制备了一系列新型的功能纳米复合材料、电致化学发光发光材料,基于这些功能纳米复合材料,设计了几种新颖的电致化学发光生物传感器,实现了肿瘤标志物的高灵敏快速检测。同时也实现了将生物催化沉淀技术和多种信号放大技术结合到电致化学发光检测中,为更灵敏检测肿瘤标志物的研究提供了一些新的思路和策略。以肿瘤标志物作为研究对象,基于多种功能化纳米标记材料,将结合生物催化沉淀技术、双共反应剂原理、表面等离子体共振增强技术相结合,应用到电致化学发光传感研究中。并且利用水凝胶设计并制备了一系列刺激响应型的针对肿瘤的药物传递检测系统。从而实现检测信号的双重放大,包括采用碳纳米角固载酶和抗体与生物催化沉淀技术结合构建的信号放大的电发光免疫传感器,用于对神经元特异性烯醇化酶的检测;生物催化沉淀与酪胺信号放大策略在电致化学发光免疫传感器中实现对铁蛋白的超灵敏检测;采用双重共反应剂、表面等离子体共振增强效应和纳米载体装载效应等手段来达到电致化学发光信号放大的目的,同时应用比率型传感策略提升电致化学发光检测准确性,构建了一系列灵敏度高、检测范围宽、稳定性强的电致化学发光生物传感器。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于全模式全聚焦方法的裂纹超声成像定量检测
基于图卷积网络的归纳式微博谣言检测新方法
人工智能技术在矿工不安全行为识别中的融合应用
基于刺激响应型纳米容器探针的无标记高灵敏高通量生物传感研究
纳米簇钙粘蛋白电致化学发光探针及传感研究
基于卟啉仿生纳米探针的电致化学发光核酸传感器的研究
高灵敏双信标复合纳米探针电致化学发光比率型酶传感器研究