Humanoid robot is one of the research frontiers in the field of robotics, and has important scientific significance and application value. The existing humanoid robot design and control methods are mainly aimed at the needs of bipedal walking mode, and the environmental adaptability is still weak. It can only cope with a relatively simple environment. The robots cannot pass the environments with common gullies and vertical obstacles using existing biped walking , which restricts the arrival range of humanoid robots, which restricts the reach and practical process of humanoid robots. Human and leg-footed animals can expand their reach and improve their environmental adaptability through high-explosive and agile jumping movements. However, the design and control methods of existing humanoid robots are difficult to satisfy the needs of stable walking and high dynamic jumping. Thus, the project will start from the study of the movement mechanism of human body high dynamic jump, establish the musculoskeletal model of human movement, design the rigid-flexible coupling drive and mechanism of humanoid robot based on bionic principle, and explore the planning of high dynamic jumping motion of humanoid robot, to improve the ability to adapt to the environment. This research not only promotes the development of humanoid robots to adapt to the motion theory of complex environments, but also contributes to the practical process of humanoid robots. Therefore, it has important theoretical significance and application value.
仿人机器人是机器人领域的研究前沿和热点,具有重要的科学意义和应用价值。现有仿人机器人设计和控制方法主要针对双足步行方式的需求,环境适应能力还比较弱,仅能应对比较简单的环境,对于具有沟壑、垂直障碍等自然界常见的环境,现有足步行方式难以通过,制约了仿人机器人的到达范围和实用化进程。人类以及自然界中各种腿足式动物可以通过高爆发和敏捷性的跳跃运动扩大到达范围,提高环境适应能力。而现有仿人机器人的设计和控制方法难以兼顾稳定行走与高动态跳跃的需求。为此,本项目将从研究人体高动态跳跃的运动机理出发,建立人体运动的肌肉骨骼模型,设计基于仿生原理的仿人机器人刚柔耦合驱动与机构,探索仿人机器人高动态跳跃运动的规划和控制方法,提高仿人机器人的到达范围和环境适应能力。本研究不仅能促进仿人机器人适应复杂环境的运动理论的发展,而且有助于推进仿人机器人实用化进程,因此具有重要的理论意义和应用价值。
仿人机器人由于其独特的运动方式、拟人的操作方式,以及类人的外形特征,一直是智能机器人研究领域的热点和前沿。尤其是近两年来,以特斯拉为首的世界知名高科技公司开始大力布局双足仿人机器人研究,以期望代替工人在制造领域完成重复、繁杂的工作,缓解全球范围内生产力不足的问题。然而,目前的电机驱动仿人机器人在运动能力方面距人类以及足式动物相差很大,不具有高动态跑跳能力。为此,本项目提出了通过借鉴仿生驱动的思路,设计了非线性高爆发驱动,并建立基于人体规律的仿人机器人高动态跳跃规划和控制方法,提高了仿人机器人的运动能力和环境适应能力,加快了仿人机器人的应用进程,并应用于北京理工大学智能机器人所的仿人机器人,显著提高了机器人的高爆发运动能力。
{{i.achievement_title}}
数据更新时间:2023-05-31
EBPR工艺运行效果的主要影响因素及研究现状
一种基于多层设计空间缩减策略的近似高维优化方法
新型树启发式搜索算法的机器人路径规划
濒危植物海南龙血树种子休眠机理及其生态学意义
二叠纪末生物大灭绝后Skolithos遗迹化石的古环境意义:以豫西和尚沟组为例
仿猫四足机器人超动态跳跃运动的仿生机构与控制研究
仿生骨骼肌肉跳跃机器人的高能效驱动与控制
仿蝗虫柔性跳跃机器人基础技术研究
基于EAP的机器人仿生柔性驱动控制