The magnetically insulated transmission line oscillator (MILO) is a typical example of the high-peak-power、no magnetic、compact and narrow-band high power microwave (HPM) source. It is also one major hotspot in the field of HPM source research at present. .Though MILO has the popular characteristics of small volume and light weight, its power conversion efficiency is not very high for most applications. It is due to the fact that the load current generates the azimuthal magnetic field. In other words, load-current energy (about half of the total input energy) does not take part in the beam-wave interaction and has not any contribution to the microwave power. Therefore, research on how to enhance the power conversion efficiency of MILO has important scientific significance when it comes to promoting the innovation on the basic theory of the MILO and the breakthrough in key technologies..This project first puts forward a high-efficiency complex MILO and carries out research from the basic theory of MILO. The technical scheme is as follows: firstly, a high impedance MILO is designed as the load of a conventional MILO, then the energy of the load current of the conventional MILO can be used to generate HPM, thus a high-efficiency complex MILO is obtained. The theoretical investigation and the simulation results show that the power conversion efficiency of the high-efficiency complex MILO is higher than 25% and can increase by 40% compared with the conventional MILO. Moreover, the high-efficiency complex MILO can generate two high power microwaves whose frequencies are near equal and form a beat wave.
磁绝缘线振荡器(MILO)是高峰值功率、无磁场、紧凑型、窄带高功率微波源的典型代表,也是当前高功率微波源研究的热点之一。.MILO依靠自身的负载电流产生绝缘磁场。其优点是体积小、重量轻。但负载电流的能量(约占总输入能量的一半)不参与束波作用转换,导致器件的功率转换效率下降。研究如何提高MILO的功率转换效率,对于推动MILO研究的基础理论创新和核心技术突破都具有重要的科学意义。.本项目从MILO运行的基本原理入手,首次提出了一个高效率复合型MILO模型。技术方案为:设计一个高阻抗MILO作为传统MILO的负载,利用传统MILO负载电流的能量产生高功率微波,构成一个高效率复合型MILO。理论分析和仿真研究表明:高效率复合型MILO的功率转换效率大于25%;和传统MILO相比,复合型MILO的功率转换效率可以相对提高40%。此外,高效率复合型MILO可以输出两个频率相差不大的微波而形成拍波
磁绝缘线振荡器(MILO)是高峰值功率、无磁场、紧凑型、窄带高功率微波源的典型代表,也是当前高功率微波源研究的热点之一。MILO依靠自身的负载电流产生绝缘磁场。其优点是体积小、重量轻。但负载电流的能量不参与束波作用转换,导致器件的功率转换效率下降。研究如何提高MILO的功率转换效率,对于推动MILO研究的基础理论创新和核心技术突破都具有重要的科学意义。.本项目从MILO运行的基本原理入手,首次提出了一个高效率复合型MILO模型。技术方案为:设计一个高阻抗MILO作为传统MILO的负载,利用传统MILO负载电流的能量产生高功率微波,构成一个高效率复合型MILO。理论分析和仿真研究表明:高效率复合型MILO的功率转换效率大于25%;和传统MILO相比,复合型MILO的功率转换效率可以相对提高40%。.在模拟研究中,在输入电压为682kV, 电流为69.4kA,输入电功率为47.3GW的条件下,MILO-1输出微波功率为8.47GW, 微波频率为1.717GHz;MILO-2输出微波功率为3.94GW, 微波频率为4.167GHz。复合型MILO总的输出功率为12.41GW,相应的功率转换效率为26.2%。MILO-1单独的功率转换效率为17.9%。针对此模型,复合型MILO的功率转换效率比传统MILO的功率转换效率相对提高了46.4%。这一模拟结果证明了前述复合型MILO理论分析的正确性。.在实验研究中,在电压为505kV,电流为49.3kA,电功率为24.9GW的条件下,高效率复合型MILO获得L波段微波功率为4.3GW,微波脉宽为54ns;C波段微波功率为1.4GW,微波脉宽为28ns。总的微波功率为5.7GW,系统功率效率为22.9%。实验结果证实了复合型MILO可以有效提高MILO的总体效率。.项目研究结果对于推动MILO研究的基础理论创新和核心技术突破都具有重要的意义。同时,项目成果具有非常广阔的国防应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
监管的非对称性、盈余管理模式选择与证监会执法效率?
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
双吸离心泵压力脉动特性数值模拟及试验研究
混采地震数据高效高精度分离处理方法研究进展
采煤工作面"爆注"一体化防突理论与技术
跨波段调谐磁绝缘线振荡器研究
磁绝缘线中电子流的产生和演变特性研究
可调静磁波振荡器
内腔泵浦高效率飞秒光学参量振荡器的研究