We aim at resolving some important statistical problems arising from genomewide DNA methylation studies. Aberrant DNA methylation pattern is a result of the interaction of genetic and environmental effects, it is uaually an indicator of human dieases including cancers and is closed related to disease progonosis. Therefore, disease-related DNA methylation marks are helpful for studying the mechanism of disease development, and can be used in early diagnosis and prognosis analysis of diseases. Age-related aberrant DNA methylation pattern is closely related to longevity, it is also ususlly associated with many human diseases. Therefore, it is very important to identify disease/age-related DNA methylation marks. Based on genome-wide DNA methylation studies, we will focus on the statistical methods for identifying disease/age-relatedd DNA methylation marks. Under case-control, cohort, and cross-sectional designs, we aim at establishing novel probability models to relate disease/age and DNA methylation pattern and other covariates, based on the models we will develop new statistical approaches to detect disease/age-related DNA methylation marks. We will also examine the theoretical properties of the proposed models and statistical methods.
本项目致力于解决全基因组DNA甲基化研究中的一些重要统计学问题。DNA甲基化模式异常是环境与基因交互作用的结果,它是包括癌症在内的很多疾病之先兆,也跟疾病预后有密切关系,因此与疾病相关的DNA甲基化标记可用于研究疾病的发生发展机理,并可以用于疾病的早期诊断和预后分析;年龄相关DNA甲基化模式异常除与寿命相关外,还往往和很多疾病密切相关。因此,筛选疾病/年龄相关DNA甲基化标志具有重要的实际意义。本项目将基于目前常用的全基因组DNA甲基化研究,探讨用于筛选疾病/年龄相关DNA甲基化标记的统计学方法。对于病例-对照设计/队列设计/横断设计下的全基因组DNA甲基化研究,我们将提出新的概率模型以联系疾病/年龄和DNA甲基化模式及其他协变量,基于新模型发展相应的统计方法用来检测疾病/年龄相关DNA甲基化标志,并研究新模型和统计方法的理论性质。
现代生命科学研究产生越来越多的高通量组学数据,分析这些高通量数据需要特别的统计学方法。作为一个问题驱动的数学研究项目,本项目致力于发展新的统计学方法用于分析这类数据,即针对各种组学数据发展了若干新的统计学方法,包括基于DNA甲基化芯片数据的年龄相依标记筛选新方法(armDNA)、基于RNA-seq数据的差异化表达分析新方法(contamDE、multiDE、PLNseq)、基于DNA-seq数据的SNV位点检测新方法(MAFseq、AntCaller)。在国际SCI期刊上共发表论文11篇,这些期刊包括Bioinformatics(数学与计算生物学1区)、Statistics in Medicine(统计与概率2区)、Statistical Methods in Medical Research(统计与概率1区)、Oncotarget(医学2区)等高影响期刊。同时开发了6个R软件包实现所发展的新方法,以供研究人员和实际工作者免费使用(https://github.com/zhanghfd)。另外,在该项目资助下,培养出3名博士和2名硕士。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
粗颗粒土的静止土压力系数非线性分析与计算方法
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于LASSO-SVMR模型城市生活需水量的预测
斑马鱼全基因组DNA甲基化发育图谱研究
挪威云杉全基因组DNA甲基化研究及裸子植物中RdDM通路的鉴定
全基因组单倍体特异性DNA甲基化鉴定和机理研究
细胞周期中全基因组DNA甲基化遗传的时序分析