Energy crisis and environment deterioration are the two issues which are restricting the sustainable development of society. Photocatalytic water splitting for hydrogen and oxygen production by utilizing solar energy is expected to reduce our excessive reliability on non-renewable fossil fuels. In this project, the novel polymeric carbon nitride-based photocatalysts for highly efficient photocatalytic hydrogen and oxygen evolution will be controllably prepared by the introduction of multifunctional groups such as cyano groups and oxygen-containing groups, oxygen doping and ultrathin porous structure together. The introduction of functional groups and oxygen atoms can control the electronic structure and extend the spectral response range of the catalyst, leading to the improved solar energy utilization; meanwhile, the functional groups can act as the reduction or oxidation reaction sites and facilitate intermolecular interactions to improve overall reaction kinetics. In addition, the ultrathin porous structure with rich edges not only can enlarge the specific surface area, increase the quantity of active sites, leading to accelerated mass transfer, but facilitate charge carries separation, resulting in enhanced photocatalytic efficiency for hydrogen and oxygen evolution. The multifunctional groups, oxygen doping and ultrathin porous structure as well as the synergistic effect amongst the three factors on the photocatalytic water splitting performance of photocatalysts will be systematically studied. Lastly, this research will elucidate the structure-activity relationship of the photocatalysts and the mechanism of photocatalytic water splitting for hydrogen and oxygen production, which would provide new insight for the development of visible-light-responsive photocatalysts with low cost, high activity and stability for water splitting.
能源危机和环境恶化是制约人类社会可持续发展的两大难题。太阳能光催化分解水产氢和产氧有望缓解对不可再生化石资源的过度依赖。本项目拟在聚合物氮化碳中同时引入多种功能基团(如氰基、含氧基团)、氧掺杂及超薄多孔结构,控制合成新的聚合物氮化碳基高效光解水产氢和产氧催化剂。功能基团和氧原子的引入可以调节氮化碳的电子结构,拓宽光谱响应范围,进而提高太阳能利用率;同时,功能基团可以用作氧化或还原反应的活性位点,促进分子间作用力,改善整个反应动力学。此外,富边缘的超薄多孔纳米片结构不仅能够增大氮化碳的比表面,增加催化活性位点数量,加速反应过程中的传质,还能促进光生载流子分离,从而提高光解水产氢和产氧效率。系统研究多种功能基团、氧掺杂以及超薄多孔结构对光解水性能的调控机制,以及三者间的协同作用。最终,阐明催化剂的构效关系及其光解水产氢和产氧机理,为开发高效、稳定、廉价的可见光响应光解水催化剂提供新的设计思路。
能源危机和环境恶化是制约人类社会可持续发展的两大难题。太阳能光催化分解水产氢和产氧有望缓解对不可再生化石资源的过度依赖。本项目拟在聚合物氮化碳中同时引入多种功能基团(如氰基、含氧基团)、氧掺杂及超薄多孔结构,控制合成新的聚合物氮化碳基高效光解水产氢和产氧催化剂。功能基团和氧原子的引入可以调节氮化碳的电子结构,拓宽光谱响应范围,进而提高太阳能利用率;同时,功能基团可以用作氧化或还原反应的活性位点,促进分子间作用力,改善整个反应动力学。此外,富边缘的超薄多孔纳米片结构不仅能够增大氮化碳的比表面,增加催化活性位点数量,加速反应过程中的传质,还能促进光生载流子分离,从而提高光解水产氢和产氧效率。系统研究多种功能基团、氧掺杂以及超薄多孔结构对光解水性能的调控机制,以及三者间的协同作用。最终,阐明催化剂的构效关系及其光解水产氢和产氧机理,为开发高效、稳定、廉价的可见光响应光解水催化剂提供新的设计思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
施用生物刺激剂对空心菜种植增效减排效应研究
不同pH条件下小球藻氨氮处理及生物质生产能力
2009 -2017年太湖湖泛发生特征及其影响因素
组蛋白去乙酰化酶在变应性鼻炎鼻黏膜上皮中的表达研究
贵州织金洞洞穴CO2的来源及其空间分布特征
用于高效光能收集的超薄纳米器件及其光电性能调控
太阳能光催化分解水制氢高效可见光催化剂研究
可见光催化分解水制氢共轭微孔聚合物研究
高效分解尿素氮和肌酐的基因工程乳酸菌的构建及其功能研究