Vibroacoustics reduction and anti-blast defensive structure design are important contents for the improvements on stealth performance and survivability of warships.The conventional designed naval ships on vibroacoustics and defensive structures can not withstand the threaten of new anti-ship missiles and sonars. Innovations in structure forms, special anti-blastic and vibroacoustic materials and design methods will be the possible solutions. In this project, a novel vibration reduction mounting and a broadside defensive structure with auxetic effect are proposed. These new structures are consist of re-entrant honeycomb cells with negative Poission's ratio, and identation resistance effect and energy absorption effect of porous materials are utilized for vibration reduction and anti-blast. The mechanism, optimal design methods and experimental technology on novel auxetic vibration reduction and broadside defensive structures are conducted, including coupling relations among auxetic effect and identation resistance effect and energy absorption effect of porous materials and performance of anti-blast, topology optimization of honeycomb cell,and test method.The comprehensive optimization design models considering anti-blast and stealth performance are established with topology, geometry, materials selection and thickness of honeycomb cells and thickness of panels as design variables. The influences and effects of the above design factors on the vibration reduction and anti-blast performance are explored through numerical and experimental study, the process of anti-ship missile impacting and penetrating broadside defensive structure, measuring on vibration reduction effect of novel floating isolation raft. The results of the project will broaden theory and design methods of new vibration reduction and defensive structure design for naval ships.
减振降噪与抗爆设计是提高舰艇隐身性及生命力的重要方法,舰艇常规减振与防护结构较难对抗高速导弹和新型声纳。本课题在结构型式、减振抗爆材料和设计方法等方面创新,提出宏观负泊松比效应舰艇减振及舷侧抗爆防护结构。该类结构由具有负泊松比效应的蜂窝胞元组成,利用压阻效应及多孔材料吸能效应,实现结构高效减振和对爆冲能量的吸收。课题探索这种新型结构与宏观负泊松比效应、压阻效应、多孔吸能效应间的力学耦合机理、设计理论和验证技术,并探讨高性能胞元拓扑构型优化方法、负泊松比结构制造与测试验证等。建立考虑抗爆与减振指标,针对负泊松比蜂窝胞元拓扑构型、几何、材料选择、胞壁及面板厚度等变量的综合优化设计模型,通过数值模拟与实验,论证新型结构特殊优越性,模拟反舰武器对新型舷侧防护结构毁伤过程,探讨实现负泊松比浮筏和基座隔振性能优化设计等。课题成果将为未来舰艇新型减振和防护结构理论的建立提供基础支撑。
减振降噪与抗爆设计是提高舰艇隐身性及生命力的重要方法,超材料船体设计理论和方法是突破现有传统材料舰艇结构振动噪声性能瓶颈的有效途径。本项目提出基于宏观负泊松比效应超材料的舰艇减振及舷侧抗爆防护结构优化设计理论和方法,研究宏观负泊松比效应减振装置及新型舷侧防护结构减振、降噪、抗爆抗冲击机理和验证技术。课题完成了全部理论研究内容及结构性能实验测试研究内容,包括超材料胞元负泊松比效应与压阻效应、多孔吸能效率、结构减振以及抗爆性能间耦合关系,高性能胞元拓扑构型优化设计方法,负泊松比效应结构制造与测试验证技术等。提出针对胞元拓扑构型、几何、材料选择、胞壁及面板厚度等几何参数,考虑减振、轻量化、承载与吸能等目标的负泊松比超材料设计FETO方法(功能基元拓扑优化法)。FETO方法解决了目前世界材料设计领域现有方法无法设计指定泊松比超材料的难题。发明了船用新型负泊松效应声子晶体基座、新型负泊松效应浮筏,对其隔振性能进行数值与实验研究,并实船应用探索。研究表明,负泊松比蜂窝隔振基座在保持支承刚度不变的情况下比常规材料基座在低频段20~100Hz具有更优良的隔振性能,低频减振效果可达8dB,且结构质量仅为常规基座质量的20%。开发了负泊松比效应超材料新型舷侧防护结构,揭示反舰武器对新型舷侧防护结构毁伤过程,利用超材料胞元压阻效应及其多孔吸能效应实现高效减振抗爆抗冲击效果。项目成果是对传统船舶结构设计理论和方法的重要创新。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
硬件木马:关键问题研究进展及新动向
滚动直线导轨副静刚度试验装置设计
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
具有负泊松比特性的智能磁流变复合结构与减振降噪机理
舰艇金属-复合材料组合结构减振降噪优化设计理论与实验研究
负泊松比材料的吸能机理与宏观等效性能预测及方法
空中爆炸载荷下宏观负泊松比效应梯度杂交夹层结构失效机理研究