The spectral resolution of hyperspectral image is high, while the spatial resolution is low. By contrast, the visible image has a higher spatial resolution but it lacks spectral information. By fusing such two kinds of images, we could get hyperspectral image with high spatial resolution and preserve the spectral information simultaneously. It is beneficial for the follow-up image processing such as target detection. However, it is hard for traditional fusion methods to improve the spatial resolution of the hyperspectral image while preserving its spectral information. Few researches on target detection in fused hyperspectral images have been done either at home or abroad. Under the circumstance, we innovatively propose new research ideas for hyperspectral image fusion and target detection based on the thoughts and methods of the blind source processing. We treat the hyperspectral image fusion problems and target detection problems as a series of special blind source separation problems and a series of blind signal extraction problems, respectively. These two kinds of problems are closely associated and their thoughts and methods can learn and improve from each other. Based on the thoughts, the project will study a series of challenging problems. These include features of typical hyperspectral images, hyperspectral image fusion based on blind source separation, target detection in fused hyperspectral image based on blind signal extraction, etc. We will also develop a practical software system. We look forward to doing research on scientific thoughts and interdisciplinary subjects and obtaining some good academic achievements.
高光谱遥感图像光谱分辨率高,而空间分辨率低;可见光遥感图像空间分辨率高,而光谱信息不足。将这两类图像融合,可获得高空间分辨率的高光谱图像,同时光谱保持不变,并对后续的图像处理,如目标检测更加有利。直接应用传统融合方法,在提高图像空间分辨率的同时,难以保持光谱不变,另外,在融合后的高光谱图像上有效进行目标检测的算法研究工作还鲜有发表。针对这些现状,我们创新性地提出在盲信号处理框架下统一研究高光谱图像融合和目标检测问题。我们将高光谱图像融合问题归结为一类特殊的盲信号分离问题,将高光谱目标检测问题归结为一类特殊的盲信号抽取问题,二者相互耦合并紧密相连,思想和方法可以相互借鉴和提升。基于此,本项目研究典型遥感图像特性;基于盲信号分离的高光谱图像融合;基于盲信号抽取的融合后高光谱图像目标检测等一系列富有挑战性的问题,并研制实用化软件系统。希冀能在科学思想、方向交叉上进行探索研究,产生好的学术成果。
高光谱遥感图像光谱分辨率高,而空间分辨率低;可见光遥感图像空间分辨率高,而光谱信息不足。将这两类图像融合,可获得高空间分辨率的高光谱图像,同时光谱保持不变,并对后续的图像处理,如目标检测更加有利。直接应用传统融合方法,在提高图像空间分辨率的同时,难以保持光谱不变,另外,在融合后的高光谱图像上有效进行目标检测的算法研究工作还鲜有发表。针对这些现状,我们创新性地提出在盲信号处理框架下统一研究高光谱图像融合和目标检测问题。我们将高光谱图像融合问题归结为一类特殊的盲信号分离问题,将高光谱目标检测问题归结为一类特殊的盲信号抽取问题,二者相互耦合并紧密相连,思想和方法可以相互借鉴和提升。基于此,本项目研究典型遥感图像特性;基于盲信号分离的高光谱图像融合;基于盲信号抽取的融合后高光谱图像目标检测等一系列富有挑战性的问题,并研制实用化软件系统。希冀能在科学思想、方向交叉上进行探索研究,产生好的学术成果。在本项目的支撑下,项目组共计发表SCI检索论文32篇(其中Q1区论文19篇,IEEE Transaction系列9篇),EI检索论文10篇;申请及授权发明专利4项,培养硕士研究生8人,博士研究生2人。圆满完成了科研与人才培养任务。
{{i.achievement_title}}
数据更新时间:2023-05-31
环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
内点最大化与冗余点控制的小型无人机遥感图像配准
基于多模态信息特征融合的犯罪预测算法研究
基于分形维数和支持向量机的串联电弧故障诊断方法
基于深度学习的高光谱图像异常目标检测算法研究
基于稀疏表示的高光谱图像目标检测方法研究
高光谱图像融合算法及质量提升模式研究
基于高光谱及荧光图像多信息融合的生菜氮素检测方法研究