Crude oil becomes heavier and heavier, and the proportion of heavy oil in crude oil is above 50%, thus bring a big challenge for current oil refinery. How to make effective use of heavy oil to produce value-added products such as functional carbon materials including graphene and carbon fibers for energy storage and conversion remains a big challenge. It is well known that there exist strong π-π interactions between highly condensed polycyclic aromatic molecules in heavy oil, which is a bottle-neck key issue that hinders the efficient conversion and utilization of heavy oil to functional carbon materials with tuned structure and properties for applications such as energy storage. Our previous yet preliminary work has demonstrated that the reactivity, wettability and rheological properties of heavy oil can be improved by partially saturating the polycyclic aromatic molecules in the heavy oil. This project aims to develop novel strategies to effectively convert and upgrade heavy oil by catalytic hydrogenation of heavy oil under mild conditions to produce high quality petroleum-based light oil, and.hydrogenated aromatics with tuned structures and properties. The interations between the polycyclic aromatic molecules, sovlents and catalysts under the real conditions in fixed-bed reactor will be studied in detail. With heavy oil and the as-made hydrogenated samples as precursors, the bottom-up strategies including template surface induction and electrolytic method will be explored to develop new processes for the controlled synthesis of high-performance carbon materials for energy storage. These efforts will help to shed a new light on the kinetic and thermodynamic nature of catalytic hydrogenation and crossing-linking reactions of polycyclic aromatic molecules in heavy oil, leading to new methods for the large scale production of high-performance carbon materials with tuned structure and properties, and to lay a solid foundation for efficient utilization of heavy oil to produce high value-added nanocarbon materials.
随着原油的不断重质化,重质油在我国原油中的比例已高达50%,对我国目前的石油加工技术形成了巨大挑战,如何实现数以亿吨计重质油的高附加值利用是一个急需解决的重大课题。其中,合成高性能碳材料是其高附加值绿色化利用的一个重要方向,但是,高缩合度和高芳香性分子结构所引起的强π-π作用阻碍/限制了重质油的高效可控转化利用。本项目将研究重质油梯级转化的新技术策略,发展重质油固定床加氢新技术;通过固定床缓和加氢,将重质油转化为适度饱和的稠环芳烃以降低分子间作用力,提高其反应性、润湿性和流变性,以加氢精制重质油为原料,基于自下而上的技术策略,采用模板表界面诱导、催化交联及电解等策略在分子层面实现高性能纳米碳材料的靶向制备;诠释稠环芳烃分子催化加氢、催化交联反应热力学与动力学本质,建立高性能碳材料的定量制备新方法,解析碳材料物理化学结构与性能之间的内在构-效关系,为重质油的高附加值绿色化利用奠定理论基础。
重质油在我国原油中的比例已高达50%,如何实现数以亿吨计重质油的高附加值利用是一个急需解决的重大课题,合成高性能碳材料是其高附加值绿色化利用的一个重要方向。本项目研究了重 质油梯级转化的新技术策略,通过萃取或热处理,将重质油分离/转化为适度饱和的稠环芳烃以降低分子间作用力,提高其反应性、润湿性和流变性;基于自下而上的技术策略,采用模板表界面诱导、催化交联及电解等策略在分子层面实现高性能纳米碳材料的靶向制备;建立了碳点、石墨烯类多孔碳、沥青树脂等高性能碳材料的定量制备新方法,解析了碳材料物理化学结构与性能之间 的内在构-效关系,为重质油的高附加值绿色化利用奠定理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
多级结构碳纳米材料构筑及其高性能聚合物电磁屏蔽纳米复合材料研究
纳米孔道中重质油缔合结构及传质特性的模拟研究
生物质多孔碳基纳米催化材料定向构筑及其选择性催化裂解焦油机理
生物油重质组分的精制及其转化机理研究