In a fuel cell using high-temperature proton exchange membrane material, in which the proton conduction is realized through hydrogen-bond overlapping under low humidity or anhydrous conditions, the toxicity to the electrode causing by carbon monoxide can be reduced, the heat can be effectively dispersed applying heat dissipation technique, and the complexity due to humidity maintenance and system operation can be eliminated to greatly simplify the cell design and manufacturing. Phosphonic acid possesses high self-dissociation ability, and can easily form hydrogen-bond. Covalently bonded phosphonic acid-containing polymers have become an important choice for developing novel proton exchange membrane materials with high proton conduction and good mechanical property under high temperature, low humidity or anhydrous circumstances...Phosphonated monomers containing electron-withdrawing moieties will be synthesized for the first time using simple and cost-effective starting materials. These monomers will be directly copolymerized with some un-phosphonated molecules to get novel phosphonated polyarylene ether materials with high molecular weight and narrow distribution index, in which the phosphonic acid groups are located in the units bearing electron-withdrawing moieties, and their contents and acidity can also be well-controlled. The structures and basic properties of these polymers will be determined. The flat film will be prepared using solvent-casting method for the micro-structure visualization and the performance measurements as proton exchange membrane materials. The relationship between the polymer molecular structure and membrane micro-structure and performance will be elucidated. The results of this research could provide systematic and diverse material platforms for the development of proton exchange membrane fuel cells suitable for high temperatures and low humidity.
低湿或无水条件下依靠氢键的交盖来实现质子传导的耐高温的质子交换膜材料可以降低一氧化碳毒性,便于热量分散,消除由湿度维持带来的复杂性,使电池元件的设计和制造简化。膦酸易于自我离解而形成氢键,因此含膦酸基团(共价键链接)的聚合物已经成为开发在高温和低湿或无水状态下能够呈现较好质子传导能力和机械性能的新的质子交换膜材料的重要选择。.本项目从简单易得的原料出发,首次设计合成含有拉电子基团的膦酰化单体,进而与其它非膦酰化的单体直接聚合,以期得到膦酸基团位于聚合物中含有拉电子基团的单元上、膦酸的含量、酸性等因素得到完全控制的、高分子量、窄分布的新型膦酰化聚芳醚高分子化合物。对其进行结构确认和基本性质测定。采用溶剂浇铸法制备平板膜,测试膜微观结构以及质子交换膜性能,构建膦酰化聚合物的分子结构与膜微观结构和膜性能之间的关系,为开发适宜于高温低湿度条件下工作的质子交换膜燃料电池提供系统化、多样化的材料平台。
低湿或无水条件下依靠氢键的交盖来实现质子传导的耐高温的质子交换膜材料可以降低一氧化碳毒性,便于热量分散,消除由湿度维持带来的复杂性,使电池元件的设计和制造简化。膦酸易于自我离解而形成氢键,因此含膦酸基团(共价键链接)的聚合物已经成为开发在高温和低湿或无水状态下能够呈现较好质子传导能力和机械性能的新的质子交换膜材料的重要选择。..本项目从简单易得的原料出发,通过光照Arbzov反应首次设计、合成了高分子量、窄分布的新型膦酰化聚芳醚高分子化合物,膦酸基团位于聚合物中含有拉电子基团的单元上、膦酸的含量、酸性等因素能够基本得到控制。对其进行了结构确认和基本性质的测定。采用溶剂浇铸法制备平板膜,测试了膜的微观结构以及质子交换膜的性能,构建了膦酰化聚合物的分子结构与膜微观结构和膜性能之间的关系,为开发适宜于高温低湿度条件下工作的质子交换膜燃料电池提供了系统化、多样化的材料平台。
{{i.achievement_title}}
数据更新时间:2023-05-31
三级硅基填料的构筑及其对牙科复合树脂性能的影响
基于相似日理论和CSO-WGPR的短期光伏发电功率预测
顾及功能语义特征的建筑物空间分布模式识别方法
植物中蛋白质S-酰化修饰的研究进展
Inconel625 高温合金J-C 本构建模
高性能三磺化聚芳醚氧膦质子交换膜的结构设计、制备与性能
聚芳硫醚氧膦基磺酸质子交换膜的制备与表征
磺化聚芳硫醚氧膦基质子交换膜的结构设计、制备与表征
侧链磺化型嵌段聚芳醚砜质子交换膜的设计、相形态结构及性能研究