Inorganic boron nitride (BN) nanomaterials can possess considerably excellent physical and chemical characteristics, such as, high mechanical, thermal and chemical stabilities as well as high thermal conductivity, superhydrophobic feature and low electric conductivity etc., all of which can make them serve as a suitable material used in extreme conditions (e.g, high temperature, high pressure, high frequency and highly corrosive medium environment). Currently, great attention has been focused on the correlative investigations on employing BN nanomaterials, as an excellent building block, to construct the new composite nanomaterials. In this project, we will mainly focus on the low dimensional BN nanomaterials including the layer, nanoribbon, nanotube, nanocone and nanocage, and employ various superatoms (e.g. superalkali, superhalogen, alkali-like, halogen-like and magnetic superatoms) as the building block to construct the new composite structures via the physical/chemical adsorption on the surface of BN systems (especially, the appealing sandwich or core-shell composites with the BN nanomaterials as a protective coat). Futher, we will explore electronic, magnetic and NLO properties of these new combined nanostructures, and will elucidate the mechanism on the significant improvement of the related properties. Our proposed surface-assembly by superatoms can be a new strategy for the design of novel BN-based materials (e.g., appealing electride compounds and powerful magnetic materials), and it can be a universal approach to modulate electronic, magnetic and NLO properties of all the low-dimensional BN nanomaterials, promoting their extensive applications in the fields of the functional nanodevices and the high-performance NLO materials etc.
无机BN材料具有优越的物理化学特性,如高机械强度、高热稳定性、高化学稳定性、高热导性、超疏水性、低电导性等,可用于高温、高压、高频以及高腐蚀等极端工作环境。目前,其作为优秀结构基元去构建新型复合材料已引起了人们的极大关注。本项目以低维BN纳米体系(如层/条带/管/锥/笼)为研究对象,利用各种超原子(如超碱/超卤/类碱/类卤/磁性超原子)作为模块在其表面组装构建新型复合结构(尤其BN作为保护层的夹心结构和核壳结构等),并在此基础上探索复合体系的电学、磁学及非线性光学性质,阐明微观机制,总结一般性规律。“超原子表面组装”能为BN基新材料(如备受关注的electride材料、强磁性材料等)设计提供全新思路和创新的物质基础;并有望作为一种普适性的新方法去调控几乎所有低维BN纳米体系的电学、磁学以及非线性光学性质,从而推进优越BN基材料在功能纳米器件和高性能非线性光学材料等多领域中的广泛应用。
无机材料具有优越的物理化学特性,如高机械强度、高热稳定性、高化学稳定性、高热导性、超疏水性、低电导性等,可用于高温、高压、高频以及高腐蚀等极端工作环境。目前,其作为优秀结构基元去构建新型复合材料已引起了人们的极大关注。本项目以低维BN/B/SiC等纳米体系为研究对象,利用各种超原子(如超碱/超卤/磁性超原子)作为模块在其表面组装构建新型复合结构,并在此基础上探索了这些复合体系的电学、磁学及非线性光学性质,发现这些这些纳米复合结构能表现出高的结构稳定性,并且“超原子表面组装”能有效调控这些无机低维纳米体系的电学、磁学以及非线性光学性质。我们深入研究了这些复合体系性能改善的微观机制,总结一般性规律,为新材料的设计提供了全新思路和创新的物质基础,从而推进优越低维无机材料在功能纳米器件,磁性材料和高性能非线性光学材料等多领域中的广泛应用。此外,我们还以过渡金属化合物(如磷化物、硼化物、氧化物)以及多种低维碳基纳米材料(如g-C3N4,石墨炔等)为对象,研究了体系的析氢/析氧催化性能,深入探索其催化机制,并通过引入缺陷、碳层包裹、构建具有超原子特性的活性中心、嵌入团簇、施加应力、杂原子掺杂、超价等方法进一步改善了体系的析氢/析氧催化性能,为实验上合成相关廉价高效的电催化剂提供了全新思路和有价值的理论信息。总之,该项目进展顺利,在该基金项目的支持下,共毕业博士生3人,硕士生8人,在国际知名学术杂志上共发表SCI论文29篇,其中以通讯作者发表论文25篇。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
硬件木马:关键问题研究进展及新动向
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
低轨卫星通信信道分配策略
低维异质结构纳米材料的自组装及其结构与性能研究
纳米晶超硬BN和BN/C块材的高温高压合成及性能研究
低维纳米材料超结构的可控合成及其结构和性能研究
植介入材料动态低硬度表界面的构筑