关于信号与噪声相关的非线性滤波问题的分解算法研究

基本信息
批准号:11871003
项目类别:面上项目
资助金额:51.00
负责人:罗雪
学科分类:
依托单位:北京航空航天大学
批准年份:2018
结题年份:2022
起止时间:2019-01-01 - 2022-12-31
项目状态: 已结题
项目参与者:叶修竹,陈秀琼,董文慧,王芳,吴静莲,苗慧敏
关键词:
非线性滤波方程反馈粒子滤波分解算法收敛性分析Zakai
结项摘要

The principal investigator (PI) proposes to study the splitting-up methods of two simplified nonlinear filtering models with correlated noises based on Duncan-Mortensen-Zakai (DMZ) equation and feedback particle filter (FPF) respectively. To be more specific, we shall study (1) the splitting-up method of solving DMZ equation. The solution of DMZ equation will be approximated by two recursive processes: the one is a deterministic process, satisfying a second-order parabolic partial differential equation, while the other one is a stochastic process, satisfying a first-order degenerate stochastic differential equation. The key of the decomposition is that the deterministic process should be independent of the online observation data. Besides the convergence analysis of the splitting-up method, the PI proposes to solve the deterministic process beforehand using the idea in the on- and off-line algorithm and to give a computable real-time algorithm. (2) the splitting-up method of FPF. Firstly, the PI shall derive the Euler-Lagrange (E-L) equations corresponding to the two simplified models with correlated noises. The E-L equations of the gain functions in FPF are obtained by minimizing the Kullback-Leibler divergences. Secondly, we shall numerically solve the gain function off-line by the similar idea in on- and off-line algorithm, so that the efficiency of the on-line computation in FPF will be improved. Lastly, the PI shall analyze the error introduced in the splitting-up procedure and show the convergence of the splitting-up FPF.

申请人提出对两类简化的噪声相关模型分别从基于Duncan-Mortensen-Zakai(DMZ)方程和反馈粒子滤波探讨分解算法。具体地说,(1)基于DMZ方程的分解算法。从Trotter算子分解思想出发将DMZ方程分解成两个过程:一个是确定性过程,其满足二阶抛物偏微分方程;另一个则是随机过程,其满足一阶退化的随机微分方程。分解的关键在确定性过程中不包含在线观测。除理论证明该分解算法的收敛性,申请人还将分解算法结合线上线下计算思想把确定性过程的求解挪至线下,给出有效的实时求解算法。(2)反馈粒子滤波的分解算法。首先根据极小化Kullback-Leibler散度推导出简化噪声相关模型的反馈粒子滤波中的增益函数满足的欧拉-拉格朗日方程。再将增益函数的求解结合线上线下思想挪至线下提前计算,以提高反馈粒子滤波的在线计算效率。最后申请人对分解引入的误差进行估计,并证明该分解算法的收敛性。

项目摘要

非线性滤波是工程与应用数学交叉领域的重要问题,有广泛的应用前景。本项目中针对状态和观测噪声相关的非线性滤波问题从不同的数学思想方法提出几种有效的分解算法。完成的研究结果如下:①理论证明基于Duncan-Mortensen-Zakai(DMZ)方程的噪声相关非线性滤波问题的分解算法收敛性;②形式化给出了噪声相关非线性滤波问题的反馈粒子滤波算法;③联系基于Kushner方程的分解算法给出反馈粒子滤波算法的理论严格推导。这些理论算法的研究将为后续的算法设计提供理论依据和保障。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

粗颗粒土的静止土压力系数非线性分析与计算方法

粗颗粒土的静止土压力系数非线性分析与计算方法

DOI:10.16285/j.rsm.2019.1280
发表时间:2019
3

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

DOI:10.19713/j.cnki.43-1423/u.t20201185
发表时间:2021
4

硬件木马:关键问题研究进展及新动向

硬件木马:关键问题研究进展及新动向

DOI:
发表时间:2018
5

基于SSVEP 直接脑控机器人方向和速度研究

基于SSVEP 直接脑控机器人方向和速度研究

DOI:10.16383/j.aas.2016.c150880
发表时间:2016

罗雪的其他基金

相似国自然基金

1

关于有限维非线性滤波分类和多项式滤波问题的研究

批准号:11471184
批准年份:2014
负责人:丘成栋
学科分类:A0601
资助金额:80.00
项目类别:面上项目
2

关于点集覆盖问题近似算法及其相关问题的研究

批准号:10971187
批准年份:2009
负责人:韩乔明
学科分类:A0406
资助金额:24.00
项目类别:面上项目
3

较高维状态值的非线性滤波问题的实时算法研究

批准号:11501023
批准年份:2015
负责人:罗雪
学科分类:A0601
资助金额:17.00
项目类别:青年科学基金项目
4

关于均衡约束均衡问题的理论与算法研究

批准号:11071028
批准年份:2010
负责人:林贵华
学科分类:A0405
资助金额:23.00
项目类别:面上项目