研究了基于变形能量最小的整体构造可变形曲面的两类方法。一类用均匀B样条曲面,对由拉格朗日方程建立的运动方程进行简化,忽略运动质量的加速度项,用罚函数法施加曲面的各种几何约束,用有限元法求解。可应用于N边域的曲面构造、曲面光顺、曲面间光滑过渡和拼接等领域。另一类用非均匀B样条曲面,用数学规划法求解控制顶点插值、型值点插值、参数曲面片超限插值等非线性问题,提出了用能量优化方法构造单边曲面、双边曲面和N边域曲面的新颖方法,提出了网格曲面构造中的任意参数曲线约束处理和重新参数化方法。以上方法的操作直观、造型适应能力强,曲面光顺性好,有待细入商品化CAD系统中,在应用考核中不断完善功能。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种基于多层设计空间缩减策略的近似高维优化方法
神经退行性疾病发病机制的研究进展
药食兼用真菌蛹虫草的液体发酵培养条件优化
现代优化理论与应用
高分五号卫星多角度偏振相机最优化估计反演:角度依赖与后验误差分析
异型曲面的多目标整体优化造型原理
双曲特异材料及特异表面的电磁特性与应用研究
K3曲面的自同构和Salem数
积分分支法和混合函数法在求解非线性发展方程方面的扩展及其应用研究