Elucidating the mechanisms for suppressing chronic inflammation could lead to life-saving therapy for a large number of patients with inflammation-related diseases such as diabetes and cancer. Our recent publications have shown that bile acid membrane receptor Gpbar1 (G-protein-coupled bile acid receptor, TGR5) is a key negative regulator of inflammation. We found that TGR5 negatively regulates hepatic inflammatory response through antagonizing NF-κB signaling pathway. TGR5 activation suppresses the phosphorylation of IκBα, the translocation of p65, NF-κB DNA-binding activity, and its transcription activity. Furthermore, we found that TGR5 activation enhances the interaction of IκBα and β-arrestin2. Suppression of NF-κB transcription activity and its target gene expression by TGR5 agonist are specifically abolished by the expression of anti-β-arrestin2 small interfering RNA. These results show that TGR5 suppresses the NF-κB pathway by mediation of the interaction between IκBα and β-arrestin2. In Specific Aim 1 of this proposal, we will determine the molecular mechanisms by which TGR5 activation enhances the interaction of IκBα and β-arrestin2. In our preliminary study, we found that TGR5 activation inhibited phosphorylation of β-arrestin2. In this aim, we propose to test the hypothesis: TGR5 enhances the β-arrestin2-IκBα interaction through promoting dephosphorylation of β-arrestin2, which contributes to suppressing NF-κB signaling. In Specific Aim 2, we will focus on the molecular mechanisms of TGR5 antagonizing NF-κB DNA-binding activity. We will investigate the effects of TGR5 activation on a competition between cAMP response element-binding (CREB) and p65 for limiting amounts of CREB-binding protein (CBP), which may cause the inhibition of NF-κB DNA binding activity. These results from this proposal will help us determine the molecular mechanisms by which TGR5 suppress hepatic inflammation, and explore whether TGR5 is a potential therapeutic candidate for prevention and treatment of inflammation-related diseases.
阐明抑制炎症的机制有助于新药开发,挽救糖尿病和癌症等炎症相关疾病患者的生命。我们已发表的工作表明,胆汁酸膜受体Gpbar1(TGR5)是炎症的关键负调节子,它通过拮抗NF-κB信号通路抑制炎症。我们发现TGR5抑制炎症是依赖于IκBα和多重信号调控子β-arrestin2形成的蛋白质复合体,TGR5激活能抑制NF-κB的DNA结合活性。本课题中我们将鉴定TGR5调控IκBα和β-arrestin2之间蛋白质相互作用的分子机制,TGR5对于β-arrestin2去磷酸化的作用将被考察。此外,在本课题中我们将鉴定TGR5对NF-κB的DNA结合活性的抑制机理,cAMP反应元件结合蛋白(CREB)磷酸化后与p65竞争结合CBP的作用将被考察。该项目内容均属首次阐述,所得结果将揭示TGR5抑制炎症的分子机制,有助于鉴定TGR5是否是潜在的治疗炎症相关疾病的药物靶向,并为其提供分子水平的理论基础。
阐明抑制炎症的机制有助于新药开发,挽救糖尿病和癌症等炎症相关疾病患者的生命。我们已发表的工作表明,胆汁酸膜受体Gpbar1(TGR5)是炎症的关键负调节子,它通过拮抗NF-κB信号通路抑制肝炎。我们发现TGR5抑制炎症是依赖于IκBα和多重信号调控子β-arrestin2形成的蛋白质复合体,TGR5激活能抑制NF-κB的DNA结合活性。本课题中我们鉴定了TGR5调控IκBα和β-arrestin2之间蛋白质相互作用的分子机制,考察了TGR5对于β-arrestin2去磷酸化的作用。此外,在本课题中我们鉴定了TGR5对NF-κB的DNA结合活性的抑制机理,考察了cAMP反应元件结合蛋白(CREB)敲低后对于TGR5抑制炎症效果的影响。我们发现TGR5能够调控β-arrestin2的磷酸化作用,增强其去磷酸化从而调控β-arrestin2和IκBα之间的相互作用;β-arrestin2的基因沉默可以消除TGR5对于NF-κB下游特定基因的抑制影响;初步确定了β-arrestin2和IκBα复合体中还存在其它蛋白因子;其次,在肿瘤细胞和免疫细胞中可能存在不同的调控机理。进一步,我们鉴定了TGR5激活后诱导了CREB磷酸化,磷酸化的CREB进而干扰了p65与DAN的结合,从而抑制了NF-κB的转录活性。本项目鉴定出抑制炎症的新机制,即TGR5抑制NF-κB信号通路分子机制的鉴定。所得结果不仅揭示出TGR5抑制炎症的分子机制,并有可能发现新的炎症相关的辅助因子。这些结果能用于指导开发治疗和预防慢性炎症的药物和新疗法,具有现实意义,对众多炎症相关疾病的治疗具有潜在指导意义。另一方面,本课题鉴定出抑制炎症新的靶向因子,即胆汁酸膜受体TGR5作为抑制炎症的药物靶向的鉴定。胆汁酸膜受体TGR5是G蛋白偶联受体,适于作为药物设计的靶向。TGR5通过感受内源胆汁酸各成分的变化而被动态激活,调控其下游路径。TGR5的调控失衡可能是多种炎症相关疾病的主要发病原因之一。该项目所得结果将在分子水平提供TGR5作为治疗炎症相关疾病药物靶向的理论基础,有助于推动以其为药物靶向的新药和新疗法的开发。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects
2016年夏秋季南极布兰斯菲尔德海峡威氏棘冰鱼脂肪酸组成及其食性指示研究
基于分形维数和支持向量机的串联电弧故障诊断方法
Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究
胆汁淤积通过胆汁酸受体GpBAR1途径致肠道动力障碍的机制
胆汁酸受体TGR5天然配体齐墩果酸减肥作用的分子机制研究
G蛋白偶联受体Gpbar1(TGR5)在胃癌中的作用和分子机制研究
胆汁酸受体FXR/TGR5对断奶仔猪肠道屏障功能的调控作用及其机制