Research on light trapping materials and light trapping structures for silicon-based solar cells is one of the advanced topics in the field of solar cells. In this project, we will carry out an investigation on improving the performance of single coaxial silicon nanowire solar cells incorporating a metal nanoparticle, which is realized not only by means of superior photon absorption and high carrier collection in silicon-based coaxial nanowire solar cells, but also by the aid of an excellent light trapping effect by combining with localized surface plasmon resonances of metal nanoparticle and leaky mode resonances of silicon nanowire. To begin with, we will study the interaction mechanism between nanoscale absorbers and plasmonic nanostructures by integrating with the well-established coupled mode theory of metal nanoparticle coated silicon nanowires and finite-difference time-domain (FDTD) numerical simulation method, leading to a thorough understanding about the effect of related parameters on the light absorption. Moreover, we will analyze the effect of related parameters on the performance of solar cells based on the establishment of the photoelectric theoretical model, resulting in optimization design for the device structure of silicon-based coaxial nanowire solar cells. Finally, we will solve the key problems about optimal light trapping structure and collective path of light-generated carriers, which will offer a new idea and theoretical basis for future applications of silicon nanowire solar cells.
硅基太阳电池陷光材料及陷光结构的应用研究是太阳电池领域的前沿课题之一。本项目提出进行金属纳米颗粒修饰提高单根同轴硅纳米线太阳电池性能的应用基础研究,主要借助于金属纳米颗粒的局域表面等离激元共振和硅纳米线的漏模共振耦合增强陷光从而提高太阳电池短路电流这一特色,以及硅基同轴纳米线太阳电池在光子吸收和光生载流子收集方面的优势。通过建立金属纳米颗粒修饰硅纳米线的耦合模理论模型,结合时域有限差分数值模拟方法,研究金属纳米颗粒的局域表面等离激元共振模式与硅纳米线漏模共振模式之间的耦合机理,明确相关参数对光吸收的影响;在建立光电理论模型的基础上,分析相关参数对太阳电池性能的影响,进而优化设计硅基同轴纳米线太阳电池的器件结构,解决最优陷光结构和最佳光生载流子收集路径等核心问题,为硅纳米线太阳电池的未来应用提供新思路和理论依据。
硅基太阳电池陷光材料及陷光结构的应用研究是太阳电池领域的前沿课题之一。本项目借助于金属纳米颗粒的局域表面等离激元共振和硅纳米线的漏模共振耦合的特性,以及硅基同轴纳米线太阳电池在光子吸收和光生载流子收集方面的优势,详细研究了金属纳米颗粒修饰单根同轴硅纳米线的光吸收和光电性质。并取得了一些阶段性成果。本项目利用时域有限差分数值模拟方法,研究了金属纳米颗粒的局域表面等离激元共振模式与硅纳米线漏模共振模式之间的耦合机理,明确了相关参数对光吸收的影响;基于Lorenz-Mie光散射理论,结合漂移扩散输运模型机建立了同轴硅纳米线光伏器件物理模型,分析了相关参数对太阳电池性能的影响,为硅纳米线太阳电池的未来应用提供了新思路和理论依据。. 3年来,本项目共发表发表学术论文12篇;授权发明专利2项,公开1项,授权实用新型专利7项。项目组成员2人晋升副教授,1人晋升讲师,培养本科毕业生22人。项目研究团队获批“光学工程”河南省重点学科(2017),新能源转换与控制技术河南省工程实验室(2014),光电转换与控制技术河南省创新型科技团队(2016),河南省高等学校优秀基层教学组织(2017),黄淮学院新能源转换与利用协同创新中心(2015)。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
粗颗粒土的静止土压力系数非线性分析与计算方法
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
基于多模态信息特征融合的犯罪预测算法研究
金属、半导体纳米结构修饰的硅纳米线阵列及其光电性能研究
由交叉的单根n型直接禁带半导体纳米线和单根p型硅纳米线形成的纳米异质结电致发光与激光
金属纳米颗粒修饰的碳化硅纳米线吸波性能和界面结合强度研究
硅-多形碳化硅同轴纳米线激光器研究